Evaluate
\frac{\sqrt{6}}{2}+\frac{3}{4}\approx 1.974744871
Factor
\frac{2 \sqrt{6} + 3}{4} = 1.974744871391589
Share
Copied to clipboard
\frac{\sqrt{3}}{\sqrt{2}}-\frac{1}{4}+1
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{4}+1
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}\sqrt{2}}{2}-\frac{1}{4}+1
The square of \sqrt{2} is 2.
\frac{\sqrt{6}}{2}-\frac{1}{4}+1
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{6}}{2}-\frac{1}{4}+\frac{4}{4}
Convert 1 to fraction \frac{4}{4}.
\frac{\sqrt{6}}{2}+\frac{-1+4}{4}
Since -\frac{1}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{6}}{2}+\frac{3}{4}
Add -1 and 4 to get 3.
\frac{2\sqrt{6}}{4}+\frac{3}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{\sqrt{6}}{2} times \frac{2}{2}.
\frac{2\sqrt{6}+3}{4}
Since \frac{2\sqrt{6}}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}