Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\sqrt{\frac{3}{2}\left(\frac{45}{36}-\frac{40}{36}\right)+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Least common multiple of 4 and 9 is 36. Convert \frac{5}{4} and \frac{10}{9} to fractions with denominator 36.
\sqrt{\frac{3}{2}\times \frac{45-40}{36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Since \frac{45}{36} and \frac{40}{36} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{3}{2}\times \frac{5}{36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Subtract 40 from 45 to get 5.
\sqrt{\frac{3\times 5}{2\times 36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Multiply \frac{3}{2} times \frac{5}{36} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{15}{72}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Do the multiplications in the fraction \frac{3\times 5}{2\times 36}.
\sqrt{\frac{5}{24}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Reduce the fraction \frac{15}{72} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{10}{48}+\frac{3}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Least common multiple of 24 and 16 is 48. Convert \frac{5}{24} and \frac{1}{16} to fractions with denominator 48.
\sqrt{\frac{10+3}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Since \frac{10}{48} and \frac{3}{48} have the same denominator, add them by adding their numerators.
\sqrt{\frac{13}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Add 10 and 3 to get 13.
\sqrt{\frac{13}{48}-\frac{\frac{9}{18}-\frac{7}{18}}{\frac{16}{3}}}
Least common multiple of 2 and 18 is 18. Convert \frac{1}{2} and \frac{7}{18} to fractions with denominator 18.
\sqrt{\frac{13}{48}-\frac{\frac{9-7}{18}}{\frac{16}{3}}}
Since \frac{9}{18} and \frac{7}{18} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{13}{48}-\frac{\frac{2}{18}}{\frac{16}{3}}}
Subtract 7 from 9 to get 2.
\sqrt{\frac{13}{48}-\frac{\frac{1}{9}}{\frac{16}{3}}}
Reduce the fraction \frac{2}{18} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{13}{48}-\frac{1}{9}\times \frac{3}{16}}
Divide \frac{1}{9} by \frac{16}{3} by multiplying \frac{1}{9} by the reciprocal of \frac{16}{3}.
\sqrt{\frac{13}{48}-\frac{1\times 3}{9\times 16}}
Multiply \frac{1}{9} times \frac{3}{16} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{13}{48}-\frac{3}{144}}
Do the multiplications in the fraction \frac{1\times 3}{9\times 16}.
\sqrt{\frac{13}{48}-\frac{1}{48}}
Reduce the fraction \frac{3}{144} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{13-1}{48}}
Since \frac{13}{48} and \frac{1}{48} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{12}{48}}
Subtract 1 from 13 to get 12.
\sqrt{\frac{1}{4}}
Reduce the fraction \frac{12}{48} to lowest terms by extracting and canceling out 12.
\frac{1}{2}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}