Solve for x
x = \frac{16 \sqrt{1015}}{29} \approx 17.577414976
Graph
Share
Copied to clipboard
x\sqrt{\frac{290}{1400}}=8
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\sqrt{\frac{29}{140}}=8
Reduce the fraction \frac{290}{1400} to lowest terms by extracting and canceling out 10.
x\times \frac{\sqrt{29}}{\sqrt{140}}=8
Rewrite the square root of the division \sqrt{\frac{29}{140}} as the division of square roots \frac{\sqrt{29}}{\sqrt{140}}.
x\times \frac{\sqrt{29}}{2\sqrt{35}}=8
Factor 140=2^{2}\times 35. Rewrite the square root of the product \sqrt{2^{2}\times 35} as the product of square roots \sqrt{2^{2}}\sqrt{35}. Take the square root of 2^{2}.
x\times \frac{\sqrt{29}\sqrt{35}}{2\left(\sqrt{35}\right)^{2}}=8
Rationalize the denominator of \frac{\sqrt{29}}{2\sqrt{35}} by multiplying numerator and denominator by \sqrt{35}.
x\times \frac{\sqrt{29}\sqrt{35}}{2\times 35}=8
The square of \sqrt{35} is 35.
x\times \frac{\sqrt{1015}}{2\times 35}=8
To multiply \sqrt{29} and \sqrt{35}, multiply the numbers under the square root.
x\times \frac{\sqrt{1015}}{70}=8
Multiply 2 and 35 to get 70.
\frac{x\sqrt{1015}}{70}=8
Express x\times \frac{\sqrt{1015}}{70} as a single fraction.
x\sqrt{1015}=8\times 70
Multiply both sides by 70.
x\sqrt{1015}=560
Multiply 8 and 70 to get 560.
\sqrt{1015}x=560
The equation is in standard form.
\frac{\sqrt{1015}x}{\sqrt{1015}}=\frac{560}{\sqrt{1015}}
Divide both sides by \sqrt{1015}.
x=\frac{560}{\sqrt{1015}}
Dividing by \sqrt{1015} undoes the multiplication by \sqrt{1015}.
x=\frac{16\sqrt{1015}}{29}
Divide 560 by \sqrt{1015}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}