\sqrt { \frac { 249 \cdot 896 } { 3,14 \times 7 } }
Evaluate
\frac{80\sqrt{39093}}{157}\approx 100.748788932
Share
Copied to clipboard
\sqrt{\frac{128\times 249}{3,14}}
Cancel out 7 in both numerator and denominator.
\sqrt{\frac{31872}{3,14}}
Multiply 128 and 249 to get 31872.
\sqrt{\frac{3187200}{314}}
Expand \frac{31872}{3,14} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{1593600}{157}}
Reduce the fraction \frac{3187200}{314} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{1593600}}{\sqrt{157}}
Rewrite the square root of the division \sqrt{\frac{1593600}{157}} as the division of square roots \frac{\sqrt{1593600}}{\sqrt{157}}.
\frac{80\sqrt{249}}{\sqrt{157}}
Factor 1593600=80^{2}\times 249. Rewrite the square root of the product \sqrt{80^{2}\times 249} as the product of square roots \sqrt{80^{2}}\sqrt{249}. Take the square root of 80^{2}.
\frac{80\sqrt{249}\sqrt{157}}{\left(\sqrt{157}\right)^{2}}
Rationalize the denominator of \frac{80\sqrt{249}}{\sqrt{157}} by multiplying numerator and denominator by \sqrt{157}.
\frac{80\sqrt{249}\sqrt{157}}{157}
The square of \sqrt{157} is 157.
\frac{80\sqrt{39093}}{157}
To multiply \sqrt{249} and \sqrt{157}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}