Evaluate
-\frac{16\sqrt{30}}{15}\approx -5.842373947
Share
Copied to clipboard
\sqrt{\frac{24}{5}}\times \frac{4}{3}\left(-2\right)
Multiply \sqrt{\frac{4}{3}} and \sqrt{\frac{4}{3}} to get \frac{4}{3}.
\frac{\sqrt{24}}{\sqrt{5}}\times \frac{4}{3}\left(-2\right)
Rewrite the square root of the division \sqrt{\frac{24}{5}} as the division of square roots \frac{\sqrt{24}}{\sqrt{5}}.
\frac{2\sqrt{6}}{\sqrt{5}}\times \frac{4}{3}\left(-2\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{2\sqrt{6}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{4}{3}\left(-2\right)
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{2\sqrt{6}\sqrt{5}}{5}\times \frac{4}{3}\left(-2\right)
The square of \sqrt{5} is 5.
\frac{2\sqrt{30}}{5}\times \frac{4}{3}\left(-2\right)
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\sqrt{30}}{5}\times \frac{4\left(-2\right)}{3}
Express \frac{4}{3}\left(-2\right) as a single fraction.
\frac{2\sqrt{30}}{5}\times \frac{-8}{3}
Multiply 4 and -2 to get -8.
\frac{2\sqrt{30}}{5}\left(-\frac{8}{3}\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{-2\sqrt{30}\times 8}{5\times 3}
Multiply \frac{2\sqrt{30}}{5} times -\frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-16\sqrt{30}}{5\times 3}
Multiply -2 and 8 to get -16.
\frac{-16\sqrt{30}}{15}
Multiply 5 and 3 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}