Evaluate
\frac{400000\sqrt{6670}}{667}\approx 48977.55199783
Share
Copied to clipboard
\sqrt{\frac{576}{2.4012\times 10^{-7}}}
Calculate 24 to the power of 2 and get 576.
\sqrt{\frac{576}{2.4012\times \frac{1}{10000000}}}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\sqrt{\frac{576}{\frac{6003}{25000000000}}}
Multiply 2.4012 and \frac{1}{10000000} to get \frac{6003}{25000000000}.
\sqrt{576\times \frac{25000000000}{6003}}
Divide 576 by \frac{6003}{25000000000} by multiplying 576 by the reciprocal of \frac{6003}{25000000000}.
\sqrt{\frac{1600000000000}{667}}
Multiply 576 and \frac{25000000000}{6003} to get \frac{1600000000000}{667}.
\frac{\sqrt{1600000000000}}{\sqrt{667}}
Rewrite the square root of the division \sqrt{\frac{1600000000000}{667}} as the division of square roots \frac{\sqrt{1600000000000}}{\sqrt{667}}.
\frac{400000\sqrt{10}}{\sqrt{667}}
Factor 1600000000000=400000^{2}\times 10. Rewrite the square root of the product \sqrt{400000^{2}\times 10} as the product of square roots \sqrt{400000^{2}}\sqrt{10}. Take the square root of 400000^{2}.
\frac{400000\sqrt{10}\sqrt{667}}{\left(\sqrt{667}\right)^{2}}
Rationalize the denominator of \frac{400000\sqrt{10}}{\sqrt{667}} by multiplying numerator and denominator by \sqrt{667}.
\frac{400000\sqrt{10}\sqrt{667}}{667}
The square of \sqrt{667} is 667.
\frac{400000\sqrt{6670}}{667}
To multiply \sqrt{10} and \sqrt{667}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}