Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{\frac{23}{180}+\frac{160}{180}}}{\frac{13}{20}}
Least common multiple of 180 and 9 is 180. Convert \frac{23}{180} and \frac{8}{9} to fractions with denominator 180.
\frac{\sqrt{\frac{23+160}{180}}}{\frac{13}{20}}
Since \frac{23}{180} and \frac{160}{180} have the same denominator, add them by adding their numerators.
\frac{\sqrt{\frac{183}{180}}}{\frac{13}{20}}
Add 23 and 160 to get 183.
\frac{\sqrt{\frac{61}{60}}}{\frac{13}{20}}
Reduce the fraction \frac{183}{180} to lowest terms by extracting and canceling out 3.
\frac{\frac{\sqrt{61}}{\sqrt{60}}}{\frac{13}{20}}
Rewrite the square root of the division \sqrt{\frac{61}{60}} as the division of square roots \frac{\sqrt{61}}{\sqrt{60}}.
\frac{\frac{\sqrt{61}}{2\sqrt{15}}}{\frac{13}{20}}
Factor 60=2^{2}\times 15. Rewrite the square root of the product \sqrt{2^{2}\times 15} as the product of square roots \sqrt{2^{2}}\sqrt{15}. Take the square root of 2^{2}.
\frac{\frac{\sqrt{61}\sqrt{15}}{2\left(\sqrt{15}\right)^{2}}}{\frac{13}{20}}
Rationalize the denominator of \frac{\sqrt{61}}{2\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\frac{\sqrt{61}\sqrt{15}}{2\times 15}}{\frac{13}{20}}
The square of \sqrt{15} is 15.
\frac{\frac{\sqrt{915}}{2\times 15}}{\frac{13}{20}}
To multiply \sqrt{61} and \sqrt{15}, multiply the numbers under the square root.
\frac{\frac{\sqrt{915}}{30}}{\frac{13}{20}}
Multiply 2 and 15 to get 30.
\frac{\sqrt{915}\times 20}{30\times 13}
Divide \frac{\sqrt{915}}{30} by \frac{13}{20} by multiplying \frac{\sqrt{915}}{30} by the reciprocal of \frac{13}{20}.
\frac{2\sqrt{915}}{3\times 13}
Cancel out 10 in both numerator and denominator.
\frac{2\sqrt{915}}{39}
Multiply 3 and 13 to get 39.