Solve for y
y=-\frac{15\left(5\sqrt{2h}+36\right)h}{2\left(25h-648\right)}
h\neq \frac{648}{25}\text{ and }h>0
Solve for h
\left\{\begin{matrix}h=\frac{\sqrt{25+\frac{1080}{y}}y^{2}}{45}+\frac{y^{2}}{9}+\frac{12y}{5}\text{, }&y\leq -\frac{216}{5}\text{ and }\frac{\sqrt{25+\frac{1080}{y}}y^{2}}{45}+\frac{y^{2}}{9}+\frac{12y}{5}\geq 0\text{ and }y\neq 0\\h=-\frac{\sqrt{25+\frac{1080}{y}}y^{2}}{45}+\frac{y^{2}}{9}+\frac{12y}{5}\text{, }&\left(y\leq -\frac{216}{5}\text{ or }y>0\right)\text{ and }-\frac{\sqrt{25+\frac{1080}{y}}y^{2}}{45}+\frac{y^{2}}{9}+\frac{12y}{5}\geq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
y\sqrt{\frac{2h}{9}}+h=2.4y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y\sqrt{\frac{2h}{9}}+h-2.4y=0
Subtract 2.4y from both sides.
y\sqrt{\frac{2h}{9}}-2.4y=-h
Subtract h from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{\frac{2h}{9}}-2.4\right)y=-h
Combine all terms containing y.
\frac{\left(\sqrt{\frac{2h}{9}}-2.4\right)y}{\sqrt{\frac{2h}{9}}-2.4}=-\frac{h}{\sqrt{\frac{2h}{9}}-2.4}
Divide both sides by \sqrt{\frac{2}{9}h}-2.4.
y=-\frac{h}{\sqrt{\frac{2h}{9}}-2.4}
Dividing by \sqrt{\frac{2}{9}h}-2.4 undoes the multiplication by \sqrt{\frac{2}{9}h}-2.4.
y=-\frac{9\left(\frac{\sqrt{2h}}{3}+2.4\right)h}{2h-51.84}
Divide -h by \sqrt{\frac{2}{9}h}-2.4.
y=-\frac{9\left(\frac{\sqrt{2h}}{3}+2.4\right)h}{2h-51.84}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}