Solve for a (complex solution)
\left\{\begin{matrix}a\neq 0\text{, }&b=2\\a=0\text{, }&b\neq 0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=2\text{, }&\text{unconditionally}\\b\neq 0\text{, }&a=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=0\text{, }&b\neq 2\text{ and }b\neq 0\\a\geq 0\text{, }&b=2\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=2\text{, }&a>0\\b\neq 0\text{, }&a=0\end{matrix}\right.
Quiz
Algebra
5 problems similar to:
\sqrt { \frac { 2 a } { b ^ { 2 } } } = \sqrt { \frac { a } { b } }
Share
Copied to clipboard
\left(\sqrt{\frac{2a}{b^{2}}}\right)^{2}=\left(\sqrt{\frac{a}{b}}\right)^{2}
Square both sides of the equation.
\frac{2a}{b^{2}}=\left(\sqrt{\frac{a}{b}}\right)^{2}
Calculate \sqrt{\frac{2a}{b^{2}}} to the power of 2 and get \frac{2a}{b^{2}}.
\frac{2a}{b^{2}}=\frac{a}{b}
Calculate \sqrt{\frac{a}{b}} to the power of 2 and get \frac{a}{b}.
2a=ba
Multiply both sides of the equation by b^{2}, the least common multiple of b^{2},b.
2a-ba=0
Subtract ba from both sides.
\left(2-b\right)a=0
Combine all terms containing a.
a=0
Divide 0 by 2-b.
\sqrt{\frac{2\times 0}{b^{2}}}=\sqrt{\frac{0}{b}}
Substitute 0 for a in the equation \sqrt{\frac{2a}{b^{2}}}=\sqrt{\frac{a}{b}}.
0=0
Simplify. The value a=0 satisfies the equation.
a=0
Equation \sqrt{\frac{2a}{b^{2}}}=\sqrt{\frac{a}{b}} has a unique solution.
\left(\sqrt{\frac{2a}{b^{2}}}\right)^{2}=\left(\sqrt{\frac{a}{b}}\right)^{2}
Square both sides of the equation.
\frac{2a}{b^{2}}=\left(\sqrt{\frac{a}{b}}\right)^{2}
Calculate \sqrt{\frac{2a}{b^{2}}} to the power of 2 and get \frac{2a}{b^{2}}.
\frac{2a}{b^{2}}=\frac{a}{b}
Calculate \sqrt{\frac{a}{b}} to the power of 2 and get \frac{a}{b}.
2a=ba
Multiply both sides of the equation by b^{2}, the least common multiple of b^{2},b.
ba=2a
Swap sides so that all variable terms are on the left hand side.
ab=2a
The equation is in standard form.
\frac{ab}{a}=\frac{2a}{a}
Divide both sides by a.
b=\frac{2a}{a}
Dividing by a undoes the multiplication by a.
b=2
Divide 2a by a.
\sqrt{\frac{2a}{2^{2}}}=\sqrt{\frac{a}{2}}
Substitute 2 for b in the equation \sqrt{\frac{2a}{b^{2}}}=\sqrt{\frac{a}{b}}.
\frac{1}{2}\times 2^{\frac{1}{2}}a^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}a^{\frac{1}{2}}
Simplify. The value b=2 satisfies the equation.
b=2
Equation \sqrt{\frac{2a}{b^{2}}}=\sqrt{\frac{a}{b}} has a unique solution.
\left(\sqrt{\frac{2a}{b^{2}}}\right)^{2}=\left(\sqrt{\frac{a}{b}}\right)^{2}
Square both sides of the equation.
\frac{2a}{b^{2}}=\left(\sqrt{\frac{a}{b}}\right)^{2}
Calculate \sqrt{\frac{2a}{b^{2}}} to the power of 2 and get \frac{2a}{b^{2}}.
\frac{2a}{b^{2}}=\frac{a}{b}
Calculate \sqrt{\frac{a}{b}} to the power of 2 and get \frac{a}{b}.
2a=ba
Multiply both sides of the equation by b^{2}, the least common multiple of b^{2},b.
2a-ba=0
Subtract ba from both sides.
\left(2-b\right)a=0
Combine all terms containing a.
a=0
Divide 0 by 2-b.
\sqrt{\frac{2\times 0}{b^{2}}}=\sqrt{\frac{0}{b}}
Substitute 0 for a in the equation \sqrt{\frac{2a}{b^{2}}}=\sqrt{\frac{a}{b}}.
0=0
Simplify. The value a=0 satisfies the equation.
a=0
Equation \sqrt{\frac{2a}{b^{2}}}=\sqrt{\frac{a}{b}} has a unique solution.
\left(\sqrt{\frac{2a}{b^{2}}}\right)^{2}=\left(\sqrt{\frac{a}{b}}\right)^{2}
Square both sides of the equation.
\frac{2a}{b^{2}}=\left(\sqrt{\frac{a}{b}}\right)^{2}
Calculate \sqrt{\frac{2a}{b^{2}}} to the power of 2 and get \frac{2a}{b^{2}}.
\frac{2a}{b^{2}}=\frac{a}{b}
Calculate \sqrt{\frac{a}{b}} to the power of 2 and get \frac{a}{b}.
2a=ba
Multiply both sides of the equation by b^{2}, the least common multiple of b^{2},b.
ba=2a
Swap sides so that all variable terms are on the left hand side.
ab=2a
The equation is in standard form.
\frac{ab}{a}=\frac{2a}{a}
Divide both sides by a.
b=\frac{2a}{a}
Dividing by a undoes the multiplication by a.
b=2
Divide 2a by a.
\sqrt{\frac{2a}{2^{2}}}=\sqrt{\frac{a}{2}}
Substitute 2 for b in the equation \sqrt{\frac{2a}{b^{2}}}=\sqrt{\frac{a}{b}}.
\frac{1}{2}\times 2^{\frac{1}{2}}a^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}a^{\frac{1}{2}}
Simplify. The value b=2 satisfies the equation.
b=2
Equation \sqrt{\frac{2a}{b^{2}}}=\sqrt{\frac{a}{b}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}