Evaluate
\frac{200\sqrt{20355}}{59}\approx 483.630339293
Share
Copied to clipboard
\sqrt{\frac{2\times 6.21\times 10^{5}}{5.31}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\sqrt{\frac{12.42\times 10^{5}}{5.31}}
Multiply 2 and 6.21 to get 12.42.
\sqrt{\frac{12.42\times 100000}{5.31}}
Calculate 10 to the power of 5 and get 100000.
\sqrt{\frac{1242000}{5.31}}
Multiply 12.42 and 100000 to get 1242000.
\sqrt{\frac{124200000}{531}}
Expand \frac{1242000}{5.31} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{13800000}{59}}
Reduce the fraction \frac{124200000}{531} to lowest terms by extracting and canceling out 9.
\frac{\sqrt{13800000}}{\sqrt{59}}
Rewrite the square root of the division \sqrt{\frac{13800000}{59}} as the division of square roots \frac{\sqrt{13800000}}{\sqrt{59}}.
\frac{200\sqrt{345}}{\sqrt{59}}
Factor 13800000=200^{2}\times 345. Rewrite the square root of the product \sqrt{200^{2}\times 345} as the product of square roots \sqrt{200^{2}}\sqrt{345}. Take the square root of 200^{2}.
\frac{200\sqrt{345}\sqrt{59}}{\left(\sqrt{59}\right)^{2}}
Rationalize the denominator of \frac{200\sqrt{345}}{\sqrt{59}} by multiplying numerator and denominator by \sqrt{59}.
\frac{200\sqrt{345}\sqrt{59}}{59}
The square of \sqrt{59} is 59.
\frac{200\sqrt{20355}}{59}
To multiply \sqrt{345} and \sqrt{59}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}