Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}}{\sqrt{5}}\sqrt{50}-\sqrt{45}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{50}-\sqrt{45}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{2}\sqrt{5}}{5}\sqrt{50}-\sqrt{45}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{5}\sqrt{50}-\sqrt{45}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}}{5}\times 5\sqrt{2}-\sqrt{45}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\sqrt{10}\sqrt{2}-\sqrt{45}
Cancel out 5 and 5.
\sqrt{2}\sqrt{5}\sqrt{2}-\sqrt{45}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
2\sqrt{5}-\sqrt{45}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{5}-3\sqrt{5}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
-\sqrt{5}
Combine 2\sqrt{5} and -3\sqrt{5} to get -\sqrt{5}.