Evaluate
\frac{\sqrt{2}}{2}\approx 0.707106781
Share
Copied to clipboard
\frac{\sqrt{2}}{\sqrt{5}}\sqrt{\frac{10}{8}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{\frac{10}{8}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{2}\sqrt{5}}{5}\sqrt{\frac{10}{8}}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{5}\sqrt{\frac{10}{8}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}}{5}\sqrt{\frac{5}{4}}
Reduce the fraction \frac{10}{8} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{10}}{5}\times \frac{\sqrt{5}}{\sqrt{4}}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
\frac{\sqrt{10}}{5}\times \frac{\sqrt{5}}{2}
Calculate the square root of 4 and get 2.
\frac{\sqrt{10}\sqrt{5}}{5\times 2}
Multiply \frac{\sqrt{10}}{5} times \frac{\sqrt{5}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{5}\sqrt{2}\sqrt{5}}{5\times 2}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{5\sqrt{2}}{5\times 2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5\sqrt{2}}{10}
Multiply 5 and 2 to get 10.
\frac{1}{2}\sqrt{2}
Divide 5\sqrt{2} by 10 to get \frac{1}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}