Evaluate
\frac{2\sqrt{10}}{9}-\frac{1}{6}\approx 0.536061702
Factor
\frac{4 \sqrt{10} - 3}{18} = 0.5360617022596399
Share
Copied to clipboard
\frac{\frac{\sqrt{2}}{\sqrt{5}}}{\frac{3}{5}}\left(1-\frac{1}{3}\right)-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\frac{\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\frac{3}{5}}\left(1-\frac{1}{3}\right)-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{\sqrt{2}\sqrt{5}}{5}}{\frac{3}{5}}\left(1-\frac{1}{3}\right)-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
The square of \sqrt{5} is 5.
\frac{\frac{\sqrt{10}}{5}}{\frac{3}{5}}\left(1-\frac{1}{3}\right)-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}\times 5}{5\times 3}\left(1-\frac{1}{3}\right)-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
Divide \frac{\sqrt{10}}{5} by \frac{3}{5} by multiplying \frac{\sqrt{10}}{5} by the reciprocal of \frac{3}{5}.
\frac{\sqrt{10}}{3}\left(1-\frac{1}{3}\right)-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
Cancel out 5 in both numerator and denominator.
\frac{\sqrt{10}}{3}\left(\frac{3}{3}-\frac{1}{3}\right)-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
Convert 1 to fraction \frac{3}{3}.
\frac{\sqrt{10}}{3}\times \frac{3-1}{3}-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{10}}{3}\times \frac{2}{3}-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
Subtract 1 from 3 to get 2.
\frac{\sqrt{10}\times 2}{3\times 3}-\sqrt{\frac{\left(\frac{1}{2}-\frac{1}{3}\right)\times \frac{1}{2}}{3}}
Multiply \frac{\sqrt{10}}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{10}\times 2}{3\times 3}-\sqrt{\frac{\left(\frac{3}{6}-\frac{2}{6}\right)\times \frac{1}{2}}{3}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{\sqrt{10}\times 2}{3\times 3}-\sqrt{\frac{\frac{3-2}{6}\times \frac{1}{2}}{3}}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{10}\times 2}{3\times 3}-\sqrt{\frac{\frac{1}{6}\times \frac{1}{2}}{3}}
Subtract 2 from 3 to get 1.
\frac{\sqrt{10}\times 2}{3\times 3}-\sqrt{\frac{\frac{1\times 1}{6\times 2}}{3}}
Multiply \frac{1}{6} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{10}\times 2}{3\times 3}-\sqrt{\frac{\frac{1}{12}}{3}}
Do the multiplications in the fraction \frac{1\times 1}{6\times 2}.
\frac{\sqrt{10}\times 2}{3\times 3}-\sqrt{\frac{1}{12\times 3}}
Express \frac{\frac{1}{12}}{3} as a single fraction.
\frac{\sqrt{10}\times 2}{3\times 3}-\sqrt{\frac{1}{36}}
Multiply 12 and 3 to get 36.
\frac{\sqrt{10}\times 2}{3\times 3}-\frac{1}{6}
Rewrite the square root of the division \frac{1}{36} as the division of square roots \frac{\sqrt{1}}{\sqrt{36}}. Take the square root of both numerator and denominator.
\frac{2\sqrt{10}\times 2}{18}-\frac{3}{18}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\times 3 and 6 is 18. Multiply \frac{\sqrt{10}\times 2}{3\times 3} times \frac{2}{2}. Multiply \frac{1}{6} times \frac{3}{3}.
\frac{2\sqrt{10}\times 2-3}{18}
Since \frac{2\sqrt{10}\times 2}{18} and \frac{3}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{10}-3}{18}
Do the multiplications in 2\sqrt{10}\times 2-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}