Solve for x
x=\frac{1}{48}\approx 0.020833333
Graph
Share
Copied to clipboard
\sqrt{\frac{2}{3}-5x}=\sqrt{3x+\frac{1}{2}}
Subtract -\sqrt{3x+\frac{1}{2}} from both sides of the equation.
\left(\sqrt{\frac{2}{3}-5x}\right)^{2}=\left(\sqrt{3x+\frac{1}{2}}\right)^{2}
Square both sides of the equation.
\frac{2}{3}-5x=\left(\sqrt{3x+\frac{1}{2}}\right)^{2}
Calculate \sqrt{\frac{2}{3}-5x} to the power of 2 and get \frac{2}{3}-5x.
\frac{2}{3}-5x=3x+\frac{1}{2}
Calculate \sqrt{3x+\frac{1}{2}} to the power of 2 and get 3x+\frac{1}{2}.
\frac{2}{3}-5x-3x=\frac{1}{2}
Subtract 3x from both sides.
\frac{2}{3}-8x=\frac{1}{2}
Combine -5x and -3x to get -8x.
-8x=\frac{1}{2}-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
-8x=\frac{3}{6}-\frac{4}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
-8x=\frac{3-4}{6}
Since \frac{3}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
-8x=-\frac{1}{6}
Subtract 4 from 3 to get -1.
x=\frac{-\frac{1}{6}}{-8}
Divide both sides by -8.
x=\frac{-1}{6\left(-8\right)}
Express \frac{-\frac{1}{6}}{-8} as a single fraction.
x=\frac{-1}{-48}
Multiply 6 and -8 to get -48.
x=\frac{1}{48}
Fraction \frac{-1}{-48} can be simplified to \frac{1}{48} by removing the negative sign from both the numerator and the denominator.
\sqrt{\frac{2}{3}-5\times \frac{1}{48}}-\sqrt{3\times \frac{1}{48}+\frac{1}{2}}=0
Substitute \frac{1}{48} for x in the equation \sqrt{\frac{2}{3}-5x}-\sqrt{3x+\frac{1}{2}}=0.
0=0
Simplify. The value x=\frac{1}{48} satisfies the equation.
x=\frac{1}{48}
Equation \sqrt{\frac{2}{3}-5x}=\sqrt{3x+\frac{1}{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}