Evaluate
\frac{3}{5}=0.6
Factor
\frac{3}{5} = 0.6
Share
Copied to clipboard
\sqrt{\frac{8}{75}}\sqrt{\frac{3\times 8+3}{8}}
To multiply \sqrt{\frac{2}{3}} and \sqrt{\frac{4}{25}}, multiply the numbers under the square root.
\frac{\sqrt{8}}{\sqrt{75}}\sqrt{\frac{3\times 8+3}{8}}
Rewrite the square root of the division \sqrt{\frac{8}{75}} as the division of square roots \frac{\sqrt{8}}{\sqrt{75}}.
\frac{2\sqrt{2}}{\sqrt{75}}\sqrt{\frac{3\times 8+3}{8}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{2}}{5\sqrt{3}}\sqrt{\frac{3\times 8+3}{8}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{2\sqrt{2}\sqrt{3}}{5\left(\sqrt{3}\right)^{2}}\sqrt{\frac{3\times 8+3}{8}}
Rationalize the denominator of \frac{2\sqrt{2}}{5\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{2}\sqrt{3}}{5\times 3}\sqrt{\frac{3\times 8+3}{8}}
The square of \sqrt{3} is 3.
\frac{2\sqrt{6}}{5\times 3}\sqrt{\frac{3\times 8+3}{8}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{6}}{15}\sqrt{\frac{3\times 8+3}{8}}
Multiply 5 and 3 to get 15.
\frac{2\sqrt{6}}{15}\sqrt{\frac{24+3}{8}}
Multiply 3 and 8 to get 24.
\frac{2\sqrt{6}}{15}\sqrt{\frac{27}{8}}
Add 24 and 3 to get 27.
\frac{2\sqrt{6}}{15}\times \frac{\sqrt{27}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{27}{8}} as the division of square roots \frac{\sqrt{27}}{\sqrt{8}}.
\frac{2\sqrt{6}}{15}\times \frac{3\sqrt{3}}{\sqrt{8}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{2\sqrt{6}}{15}\times \frac{3\sqrt{3}}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{6}}{15}\times \frac{3\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{3}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2\sqrt{6}}{15}\times \frac{3\sqrt{3}\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{6}}{15}\times \frac{3\sqrt{6}}{2\times 2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{2\sqrt{6}}{15}\times \frac{3\sqrt{6}}{4}
Multiply 2 and 2 to get 4.
\frac{2\sqrt{6}\times 3\sqrt{6}}{15\times 4}
Multiply \frac{2\sqrt{6}}{15} times \frac{3\sqrt{6}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}\sqrt{6}}{2\times 5}
Cancel out 2\times 3 in both numerator and denominator.
\frac{6}{2\times 5}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{6}{10}
Multiply 2 and 5 to get 10.
\frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}