Evaluate
\frac{\sqrt{6}-5}{2}\approx -1.275255129
Factor
\frac{\sqrt{6} - 5}{2} = -1.275255128608411
Share
Copied to clipboard
\frac{\sqrt{2}}{\sqrt{3}}\times \frac{6}{4}-\frac{10}{4}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{6}{4}-\frac{10}{4}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3}\times \frac{6}{4}-\frac{10}{4}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}}{3}\times \frac{6}{4}-\frac{10}{4}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}}{3}\times \frac{3}{2}-\frac{10}{4}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{6}\times 3}{3\times 2}-\frac{10}{4}
Multiply \frac{\sqrt{6}}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}}{2}-\frac{10}{4}
Cancel out 3 in both numerator and denominator.
\frac{\sqrt{6}}{2}-\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{6}-5}{2}
Since \frac{\sqrt{6}}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}