\sqrt { \frac { 2 } { 3 } + ( 1 + \frac { 1 } { 2 } ) \cdot [ ( \frac { 3 } { 2 } ) ^ { 2 } - ( 1 - \frac { 2 } { 5 } ) : ( \frac { 8 } { 5 } : 11 + \frac { 4 } { 33 } ) ] ^ { 0,01 } } =
Evaluate
\frac{\sqrt{6}}{3}\approx 0.816496581
Share
Copied to clipboard
\sqrt{\frac{2}{3}+\frac{3}{2}\left(\left(\frac{3}{2}\right)^{2}-\frac{1-\frac{2}{5}}{\frac{\frac{8}{5}}{11}+\frac{4}{33}}\right)^{0,01}}
Add 1 and \frac{1}{2} to get \frac{3}{2}.
\sqrt{\frac{2}{3}+\frac{3}{2}\left(\frac{9}{4}-\frac{1-\frac{2}{5}}{\frac{\frac{8}{5}}{11}+\frac{4}{33}}\right)^{0,01}}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\sqrt{\frac{2}{3}+\frac{3}{2}\left(\frac{9}{4}-\frac{\frac{3}{5}}{\frac{\frac{8}{5}}{11}+\frac{4}{33}}\right)^{0,01}}
Subtract \frac{2}{5} from 1 to get \frac{3}{5}.
\sqrt{\frac{2}{3}+\frac{3}{2}\left(\frac{9}{4}-\frac{\frac{3}{5}}{\frac{8}{5\times 11}+\frac{4}{33}}\right)^{0,01}}
Express \frac{\frac{8}{5}}{11} as a single fraction.
\sqrt{\frac{2}{3}+\frac{3}{2}\left(\frac{9}{4}-\frac{\frac{3}{5}}{\frac{8}{55}+\frac{4}{33}}\right)^{0,01}}
Multiply 5 and 11 to get 55.
\sqrt{\frac{2}{3}+\frac{3}{2}\left(\frac{9}{4}-\frac{\frac{3}{5}}{\frac{4}{15}}\right)^{0,01}}
Add \frac{8}{55} and \frac{4}{33} to get \frac{4}{15}.
\sqrt{\frac{2}{3}+\frac{3}{2}\left(\frac{9}{4}-\frac{3}{5}\times \frac{15}{4}\right)^{0,01}}
Divide \frac{3}{5} by \frac{4}{15} by multiplying \frac{3}{5} by the reciprocal of \frac{4}{15}.
\sqrt{\frac{2}{3}+\frac{3}{2}\left(\frac{9}{4}-\frac{9}{4}\right)^{0,01}}
Multiply \frac{3}{5} and \frac{15}{4} to get \frac{9}{4}.
\sqrt{\frac{2}{3}+\frac{3}{2}\times 0^{0,01}}
Subtract \frac{9}{4} from \frac{9}{4} to get 0.
\sqrt{\frac{2}{3}+\frac{3}{2}\times 0}
Calculate 0 to the power of 0,01 and get 0.
\sqrt{\frac{2}{3}+0}
Multiply \frac{3}{2} and 0 to get 0.
\sqrt{\frac{2}{3}}
Add \frac{2}{3} and 0 to get \frac{2}{3}.
\frac{\sqrt{2}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}