Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\sqrt{\frac{1}{9}\times \frac{\frac{11}{3}-\left(\frac{5}{6}-\frac{3}{4}\right)}{3-\frac{11}{4}+\frac{10}{3}}}
Reduce the fraction \frac{2}{18} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{1}{9}\times \frac{\frac{11}{3}-\left(\frac{10}{12}-\frac{9}{12}\right)}{3-\frac{11}{4}+\frac{10}{3}}}
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{3}{4} to fractions with denominator 12.
\sqrt{\frac{1}{9}\times \frac{\frac{11}{3}-\frac{10-9}{12}}{3-\frac{11}{4}+\frac{10}{3}}}
Since \frac{10}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{9}\times \frac{\frac{11}{3}-\frac{1}{12}}{3-\frac{11}{4}+\frac{10}{3}}}
Subtract 9 from 10 to get 1.
\sqrt{\frac{1}{9}\times \frac{\frac{44}{12}-\frac{1}{12}}{3-\frac{11}{4}+\frac{10}{3}}}
Least common multiple of 3 and 12 is 12. Convert \frac{11}{3} and \frac{1}{12} to fractions with denominator 12.
\sqrt{\frac{1}{9}\times \frac{\frac{44-1}{12}}{3-\frac{11}{4}+\frac{10}{3}}}
Since \frac{44}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{9}\times \frac{\frac{43}{12}}{3-\frac{11}{4}+\frac{10}{3}}}
Subtract 1 from 44 to get 43.
\sqrt{\frac{1}{9}\times \frac{\frac{43}{12}}{\frac{12}{4}-\frac{11}{4}+\frac{10}{3}}}
Convert 3 to fraction \frac{12}{4}.
\sqrt{\frac{1}{9}\times \frac{\frac{43}{12}}{\frac{12-11}{4}+\frac{10}{3}}}
Since \frac{12}{4} and \frac{11}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{9}\times \frac{\frac{43}{12}}{\frac{1}{4}+\frac{10}{3}}}
Subtract 11 from 12 to get 1.
\sqrt{\frac{1}{9}\times \frac{\frac{43}{12}}{\frac{3}{12}+\frac{40}{12}}}
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{10}{3} to fractions with denominator 12.
\sqrt{\frac{1}{9}\times \frac{\frac{43}{12}}{\frac{3+40}{12}}}
Since \frac{3}{12} and \frac{40}{12} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1}{9}\times \frac{\frac{43}{12}}{\frac{43}{12}}}
Add 3 and 40 to get 43.
\sqrt{\frac{1}{9}\times 1}
Divide \frac{43}{12} by \frac{43}{12} to get 1.
\sqrt{\frac{1}{9}}
Multiply \frac{1}{9} and 1 to get \frac{1}{9}.
\frac{1}{3}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}