Evaluate
\frac{2\sqrt{195}}{65}\approx 0.429668924
Share
Copied to clipboard
\frac{\frac{\sqrt{2}}{\sqrt{13}}}{\sqrt{\frac{5}{6}}}
Rewrite the square root of the division \sqrt{\frac{2}{13}} as the division of square roots \frac{\sqrt{2}}{\sqrt{13}}.
\frac{\frac{\sqrt{2}\sqrt{13}}{\left(\sqrt{13}\right)^{2}}}{\sqrt{\frac{5}{6}}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{13}} by multiplying numerator and denominator by \sqrt{13}.
\frac{\frac{\sqrt{2}\sqrt{13}}{13}}{\sqrt{\frac{5}{6}}}
The square of \sqrt{13} is 13.
\frac{\frac{\sqrt{26}}{13}}{\sqrt{\frac{5}{6}}}
To multiply \sqrt{2} and \sqrt{13}, multiply the numbers under the square root.
\frac{\frac{\sqrt{26}}{13}}{\frac{\sqrt{5}}{\sqrt{6}}}
Rewrite the square root of the division \sqrt{\frac{5}{6}} as the division of square roots \frac{\sqrt{5}}{\sqrt{6}}.
\frac{\frac{\sqrt{26}}{13}}{\frac{\sqrt{5}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\frac{\sqrt{26}}{13}}{\frac{\sqrt{5}\sqrt{6}}{6}}
The square of \sqrt{6} is 6.
\frac{\frac{\sqrt{26}}{13}}{\frac{\sqrt{30}}{6}}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
\frac{\sqrt{26}\times 6}{13\sqrt{30}}
Divide \frac{\sqrt{26}}{13} by \frac{\sqrt{30}}{6} by multiplying \frac{\sqrt{26}}{13} by the reciprocal of \frac{\sqrt{30}}{6}.
\frac{\sqrt{26}\times 6\sqrt{30}}{13\left(\sqrt{30}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{26}\times 6}{13\sqrt{30}} by multiplying numerator and denominator by \sqrt{30}.
\frac{\sqrt{26}\times 6\sqrt{30}}{13\times 30}
The square of \sqrt{30} is 30.
\frac{\sqrt{780}\times 6}{13\times 30}
To multiply \sqrt{26} and \sqrt{30}, multiply the numbers under the square root.
\frac{\sqrt{780}\times 6}{390}
Multiply 13 and 30 to get 390.
\frac{2\sqrt{195}\times 6}{390}
Factor 780=2^{2}\times 195. Rewrite the square root of the product \sqrt{2^{2}\times 195} as the product of square roots \sqrt{2^{2}}\sqrt{195}. Take the square root of 2^{2}.
\frac{12\sqrt{195}}{390}
Multiply 2 and 6 to get 12.
\frac{2}{65}\sqrt{195}
Divide 12\sqrt{195} by 390 to get \frac{2}{65}\sqrt{195}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}