Evaluate
\frac{\sqrt{5874}}{55}\approx 1.393491364
Share
Copied to clipboard
\sqrt{2-\left(\frac{12}{11}+\frac{4}{3}-\left(\frac{3}{5}+\frac{1}{3}\right)\right)\times \frac{1}{41}\times \frac{8}{5}}
Anything divided by one gives itself.
\sqrt{2-\left(\frac{36}{33}+\frac{44}{33}-\left(\frac{3}{5}+\frac{1}{3}\right)\right)\times \frac{1}{41}\times \frac{8}{5}}
Least common multiple of 11 and 3 is 33. Convert \frac{12}{11} and \frac{4}{3} to fractions with denominator 33.
\sqrt{2-\left(\frac{36+44}{33}-\left(\frac{3}{5}+\frac{1}{3}\right)\right)\times \frac{1}{41}\times \frac{8}{5}}
Since \frac{36}{33} and \frac{44}{33} have the same denominator, add them by adding their numerators.
\sqrt{2-\left(\frac{80}{33}-\left(\frac{3}{5}+\frac{1}{3}\right)\right)\times \frac{1}{41}\times \frac{8}{5}}
Add 36 and 44 to get 80.
\sqrt{2-\left(\frac{80}{33}-\left(\frac{9}{15}+\frac{5}{15}\right)\right)\times \frac{1}{41}\times \frac{8}{5}}
Least common multiple of 5 and 3 is 15. Convert \frac{3}{5} and \frac{1}{3} to fractions with denominator 15.
\sqrt{2-\left(\frac{80}{33}-\frac{9+5}{15}\right)\times \frac{1}{41}\times \frac{8}{5}}
Since \frac{9}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
\sqrt{2-\left(\frac{80}{33}-\frac{14}{15}\right)\times \frac{1}{41}\times \frac{8}{5}}
Add 9 and 5 to get 14.
\sqrt{2-\left(\frac{400}{165}-\frac{154}{165}\right)\times \frac{1}{41}\times \frac{8}{5}}
Least common multiple of 33 and 15 is 165. Convert \frac{80}{33} and \frac{14}{15} to fractions with denominator 165.
\sqrt{2-\frac{400-154}{165}\times \frac{1}{41}\times \frac{8}{5}}
Since \frac{400}{165} and \frac{154}{165} have the same denominator, subtract them by subtracting their numerators.
\sqrt{2-\frac{246}{165}\times \frac{1}{41}\times \frac{8}{5}}
Subtract 154 from 400 to get 246.
\sqrt{2-\frac{82}{55}\times \frac{1}{41}\times \frac{8}{5}}
Reduce the fraction \frac{246}{165} to lowest terms by extracting and canceling out 3.
\sqrt{2-\frac{82\times 1}{55\times 41}\times \frac{8}{5}}
Multiply \frac{82}{55} times \frac{1}{41} by multiplying numerator times numerator and denominator times denominator.
\sqrt{2-\frac{82}{2255}\times \frac{8}{5}}
Do the multiplications in the fraction \frac{82\times 1}{55\times 41}.
\sqrt{2-\frac{2}{55}\times \frac{8}{5}}
Reduce the fraction \frac{82}{2255} to lowest terms by extracting and canceling out 41.
\sqrt{2-\frac{2\times 8}{55\times 5}}
Multiply \frac{2}{55} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{2-\frac{16}{275}}
Do the multiplications in the fraction \frac{2\times 8}{55\times 5}.
\sqrt{\frac{550}{275}-\frac{16}{275}}
Convert 2 to fraction \frac{550}{275}.
\sqrt{\frac{550-16}{275}}
Since \frac{550}{275} and \frac{16}{275} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{534}{275}}
Subtract 16 from 550 to get 534.
\frac{\sqrt{534}}{\sqrt{275}}
Rewrite the square root of the division \sqrt{\frac{534}{275}} as the division of square roots \frac{\sqrt{534}}{\sqrt{275}}.
\frac{\sqrt{534}}{5\sqrt{11}}
Factor 275=5^{2}\times 11. Rewrite the square root of the product \sqrt{5^{2}\times 11} as the product of square roots \sqrt{5^{2}}\sqrt{11}. Take the square root of 5^{2}.
\frac{\sqrt{534}\sqrt{11}}{5\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{534}}{5\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\sqrt{534}\sqrt{11}}{5\times 11}
The square of \sqrt{11} is 11.
\frac{\sqrt{5874}}{5\times 11}
To multiply \sqrt{534} and \sqrt{11}, multiply the numbers under the square root.
\frac{\sqrt{5874}}{55}
Multiply 5 and 11 to get 55.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}