Evaluate
\frac{\sqrt{63231}}{1053850000000}\approx 2.386086729 \cdot 10^{-10}
Share
Copied to clipboard
\sqrt{\frac{9600}{6.022\times 10^{23}\times 0.28}}
Multiply 2 and 4800 to get 9600.
\sqrt{\frac{9600}{6.022\times 100000000000000000000000\times 0.28}}
Calculate 10 to the power of 23 and get 100000000000000000000000.
\sqrt{\frac{9600}{602200000000000000000000\times 0.28}}
Multiply 6.022 and 100000000000000000000000 to get 602200000000000000000000.
\sqrt{\frac{9600}{168616000000000000000000}}
Multiply 602200000000000000000000 and 0.28 to get 168616000000000000000000.
\sqrt{\frac{3}{52692500000000000000}}
Reduce the fraction \frac{9600}{168616000000000000000000} to lowest terms by extracting and canceling out 3200.
\frac{\sqrt{3}}{\sqrt{52692500000000000000}}
Rewrite the square root of the division \sqrt{\frac{3}{52692500000000000000}} as the division of square roots \frac{\sqrt{3}}{\sqrt{52692500000000000000}}.
\frac{\sqrt{3}}{50000000\sqrt{21077}}
Factor 52692500000000000000=50000000^{2}\times 21077. Rewrite the square root of the product \sqrt{50000000^{2}\times 21077} as the product of square roots \sqrt{50000000^{2}}\sqrt{21077}. Take the square root of 50000000^{2}.
\frac{\sqrt{3}\sqrt{21077}}{50000000\left(\sqrt{21077}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{50000000\sqrt{21077}} by multiplying numerator and denominator by \sqrt{21077}.
\frac{\sqrt{3}\sqrt{21077}}{50000000\times 21077}
The square of \sqrt{21077} is 21077.
\frac{\sqrt{63231}}{50000000\times 21077}
To multiply \sqrt{3} and \sqrt{21077}, multiply the numbers under the square root.
\frac{\sqrt{63231}}{1053850000000}
Multiply 50000000 and 21077 to get 1053850000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}