Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\left(\frac{\left(\frac{2}{5}\right)^{2}}{\left(\frac{8}{5}\right)^{2}}+\frac{5}{2}-\frac{9}{8}-\frac{9}{16}\right)^{2}}}}
Subtract \frac{1}{3} from \frac{11}{15} to get \frac{2}{5}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\left(\frac{\frac{4}{25}}{\left(\frac{8}{5}\right)^{2}}+\frac{5}{2}-\frac{9}{8}-\frac{9}{16}\right)^{2}}}}
Calculate \frac{2}{5} to the power of 2 and get \frac{4}{25}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\left(\frac{\frac{4}{25}}{\frac{64}{25}}+\frac{5}{2}-\frac{9}{8}-\frac{9}{16}\right)^{2}}}}
Calculate \frac{8}{5} to the power of 2 and get \frac{64}{25}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\left(\frac{4}{25}\times \frac{25}{64}+\frac{5}{2}-\frac{9}{8}-\frac{9}{16}\right)^{2}}}}
Divide \frac{4}{25} by \frac{64}{25} by multiplying \frac{4}{25} by the reciprocal of \frac{64}{25}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\left(\frac{1}{16}+\frac{5}{2}-\frac{9}{8}-\frac{9}{16}\right)^{2}}}}
Multiply \frac{4}{25} and \frac{25}{64} to get \frac{1}{16}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\left(\frac{41}{16}-\frac{9}{8}-\frac{9}{16}\right)^{2}}}}
Add \frac{1}{16} and \frac{5}{2} to get \frac{41}{16}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\left(\frac{23}{16}-\frac{9}{16}\right)^{2}}}}
Subtract \frac{9}{8} from \frac{41}{16} to get \frac{23}{16}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\left(\frac{7}{8}\right)^{2}}}}
Subtract \frac{9}{16} from \frac{23}{16} to get \frac{7}{8}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{\frac{7}{8}}{\frac{49}{64}}}}
Calculate \frac{7}{8} to the power of 2 and get \frac{49}{64}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{7}{8}\times \frac{64}{49}}}
Divide \frac{7}{8} by \frac{49}{64} by multiplying \frac{7}{8} by the reciprocal of \frac{49}{64}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{2}{5}+\frac{8}{7}}}
Multiply \frac{7}{8} and \frac{64}{49} to get \frac{8}{7}.
\sqrt{\frac{17}{12}+\frac{\frac{9}{7}}{\frac{54}{35}}}
Add \frac{2}{5} and \frac{8}{7} to get \frac{54}{35}.
\sqrt{\frac{17}{12}+\frac{9}{7}\times \frac{35}{54}}
Divide \frac{9}{7} by \frac{54}{35} by multiplying \frac{9}{7} by the reciprocal of \frac{54}{35}.
\sqrt{\frac{17}{12}+\frac{5}{6}}
Multiply \frac{9}{7} and \frac{35}{54} to get \frac{5}{6}.
\sqrt{\frac{9}{4}}
Add \frac{17}{12} and \frac{5}{6} to get \frac{9}{4}.
\frac{3}{2}
Rewrite the square root of the division \frac{9}{4} as the division of square roots \frac{\sqrt{9}}{\sqrt{4}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}