Evaluate
\frac{\sqrt{12215}}{105}\approx 1.05258563
Share
Copied to clipboard
\sqrt{\frac{16}{15}\times \frac{8}{7}-\frac{\frac{13}{15}}{\frac{13}{10}}+\frac{1}{3}\times \frac{5}{3}}
Divide \frac{16}{15} by \frac{7}{8} by multiplying \frac{16}{15} by the reciprocal of \frac{7}{8}.
\sqrt{\frac{16\times 8}{15\times 7}-\frac{\frac{13}{15}}{\frac{13}{10}}+\frac{1}{3}\times \frac{5}{3}}
Multiply \frac{16}{15} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{128}{105}-\frac{\frac{13}{15}}{\frac{13}{10}}+\frac{1}{3}\times \frac{5}{3}}
Do the multiplications in the fraction \frac{16\times 8}{15\times 7}.
\sqrt{\frac{128}{105}-\frac{13}{15}\times \frac{10}{13}+\frac{1}{3}\times \frac{5}{3}}
Divide \frac{13}{15} by \frac{13}{10} by multiplying \frac{13}{15} by the reciprocal of \frac{13}{10}.
\sqrt{\frac{128}{105}-\frac{13\times 10}{15\times 13}+\frac{1}{3}\times \frac{5}{3}}
Multiply \frac{13}{15} times \frac{10}{13} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{128}{105}-\frac{10}{15}+\frac{1}{3}\times \frac{5}{3}}
Cancel out 13 in both numerator and denominator.
\sqrt{\frac{128}{105}-\frac{2}{3}+\frac{1}{3}\times \frac{5}{3}}
Reduce the fraction \frac{10}{15} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{128}{105}-\frac{70}{105}+\frac{1}{3}\times \frac{5}{3}}
Least common multiple of 105 and 3 is 105. Convert \frac{128}{105} and \frac{2}{3} to fractions with denominator 105.
\sqrt{\frac{128-70}{105}+\frac{1}{3}\times \frac{5}{3}}
Since \frac{128}{105} and \frac{70}{105} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{58}{105}+\frac{1}{3}\times \frac{5}{3}}
Subtract 70 from 128 to get 58.
\sqrt{\frac{58}{105}+\frac{1\times 5}{3\times 3}}
Multiply \frac{1}{3} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{58}{105}+\frac{5}{9}}
Do the multiplications in the fraction \frac{1\times 5}{3\times 3}.
\sqrt{\frac{174}{315}+\frac{175}{315}}
Least common multiple of 105 and 9 is 315. Convert \frac{58}{105} and \frac{5}{9} to fractions with denominator 315.
\sqrt{\frac{174+175}{315}}
Since \frac{174}{315} and \frac{175}{315} have the same denominator, add them by adding their numerators.
\sqrt{\frac{349}{315}}
Add 174 and 175 to get 349.
\frac{\sqrt{349}}{\sqrt{315}}
Rewrite the square root of the division \sqrt{\frac{349}{315}} as the division of square roots \frac{\sqrt{349}}{\sqrt{315}}.
\frac{\sqrt{349}}{3\sqrt{35}}
Factor 315=3^{2}\times 35. Rewrite the square root of the product \sqrt{3^{2}\times 35} as the product of square roots \sqrt{3^{2}}\sqrt{35}. Take the square root of 3^{2}.
\frac{\sqrt{349}\sqrt{35}}{3\left(\sqrt{35}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{349}}{3\sqrt{35}} by multiplying numerator and denominator by \sqrt{35}.
\frac{\sqrt{349}\sqrt{35}}{3\times 35}
The square of \sqrt{35} is 35.
\frac{\sqrt{12215}}{3\times 35}
To multiply \sqrt{349} and \sqrt{35}, multiply the numbers under the square root.
\frac{\sqrt{12215}}{105}
Multiply 3 and 35 to get 105.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}