Evaluate
\frac{\sqrt{10}}{10}\approx 0.316227766
Quiz
Arithmetic
5 problems similar to:
\sqrt { \frac { 15 } { 70 } } \times \sqrt { \frac { 28 } { 60 } }
Share
Copied to clipboard
\sqrt{\frac{3}{14}}\sqrt{\frac{28}{60}}
Reduce the fraction \frac{15}{70} to lowest terms by extracting and canceling out 5.
\frac{\sqrt{3}}{\sqrt{14}}\sqrt{\frac{28}{60}}
Rewrite the square root of the division \sqrt{\frac{3}{14}} as the division of square roots \frac{\sqrt{3}}{\sqrt{14}}.
\frac{\sqrt{3}\sqrt{14}}{\left(\sqrt{14}\right)^{2}}\sqrt{\frac{28}{60}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{14}} by multiplying numerator and denominator by \sqrt{14}.
\frac{\sqrt{3}\sqrt{14}}{14}\sqrt{\frac{28}{60}}
The square of \sqrt{14} is 14.
\frac{\sqrt{42}}{14}\sqrt{\frac{28}{60}}
To multiply \sqrt{3} and \sqrt{14}, multiply the numbers under the square root.
\frac{\sqrt{42}}{14}\sqrt{\frac{7}{15}}
Reduce the fraction \frac{28}{60} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{42}}{14}\times \frac{\sqrt{7}}{\sqrt{15}}
Rewrite the square root of the division \sqrt{\frac{7}{15}} as the division of square roots \frac{\sqrt{7}}{\sqrt{15}}.
\frac{\sqrt{42}}{14}\times \frac{\sqrt{7}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\sqrt{42}}{14}\times \frac{\sqrt{7}\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{\sqrt{42}}{14}\times \frac{\sqrt{105}}{15}
To multiply \sqrt{7} and \sqrt{15}, multiply the numbers under the square root.
\frac{\sqrt{42}\sqrt{105}}{14\times 15}
Multiply \frac{\sqrt{42}}{14} times \frac{\sqrt{105}}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{4410}}{14\times 15}
To multiply \sqrt{42} and \sqrt{105}, multiply the numbers under the square root.
\frac{\sqrt{4410}}{210}
Multiply 14 and 15 to get 210.
\frac{21\sqrt{10}}{210}
Factor 4410=21^{2}\times 10. Rewrite the square root of the product \sqrt{21^{2}\times 10} as the product of square roots \sqrt{21^{2}}\sqrt{10}. Take the square root of 21^{2}.
\frac{1}{10}\sqrt{10}
Divide 21\sqrt{10} by 210 to get \frac{1}{10}\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}