Evaluate
\frac{\sqrt{6594}}{70}\approx 1.16004926
Share
Copied to clipboard
\sqrt{\frac{3}{5}-\frac{36}{21}+\frac{123}{50}}
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{3}{5}-\frac{12}{7}+\frac{123}{50}}
Reduce the fraction \frac{36}{21} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{21}{35}-\frac{60}{35}+\frac{123}{50}}
Least common multiple of 5 and 7 is 35. Convert \frac{3}{5} and \frac{12}{7} to fractions with denominator 35.
\sqrt{\frac{21-60}{35}+\frac{123}{50}}
Since \frac{21}{35} and \frac{60}{35} have the same denominator, subtract them by subtracting their numerators.
\sqrt{-\frac{39}{35}+\frac{123}{50}}
Subtract 60 from 21 to get -39.
\sqrt{-\frac{390}{350}+\frac{861}{350}}
Least common multiple of 35 and 50 is 350. Convert -\frac{39}{35} and \frac{123}{50} to fractions with denominator 350.
\sqrt{\frac{-390+861}{350}}
Since -\frac{390}{350} and \frac{861}{350} have the same denominator, add them by adding their numerators.
\sqrt{\frac{471}{350}}
Add -390 and 861 to get 471.
\frac{\sqrt{471}}{\sqrt{350}}
Rewrite the square root of the division \sqrt{\frac{471}{350}} as the division of square roots \frac{\sqrt{471}}{\sqrt{350}}.
\frac{\sqrt{471}}{5\sqrt{14}}
Factor 350=5^{2}\times 14. Rewrite the square root of the product \sqrt{5^{2}\times 14} as the product of square roots \sqrt{5^{2}}\sqrt{14}. Take the square root of 5^{2}.
\frac{\sqrt{471}\sqrt{14}}{5\left(\sqrt{14}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{471}}{5\sqrt{14}} by multiplying numerator and denominator by \sqrt{14}.
\frac{\sqrt{471}\sqrt{14}}{5\times 14}
The square of \sqrt{14} is 14.
\frac{\sqrt{6594}}{5\times 14}
To multiply \sqrt{471} and \sqrt{14}, multiply the numbers under the square root.
\frac{\sqrt{6594}}{70}
Multiply 5 and 14 to get 70.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}