Evaluate
\sqrt{6}+2\approx 4.449489743
Factor
\sqrt{6} + 2 = 4.449489743
Share
Copied to clipboard
\frac{\sqrt{11}}{\sqrt{3}}\times \frac{\left(\sqrt{3}+\sqrt{2}\right)^{2}}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
Rewrite the square root of the division \sqrt{\frac{11}{3}} as the division of square roots \frac{\sqrt{11}}{\sqrt{3}}.
\frac{\sqrt{11}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{\left(\sqrt{3}+\sqrt{2}\right)^{2}}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{11}\sqrt{3}}{3}\times \frac{\left(\sqrt{3}+\sqrt{2}\right)^{2}}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
The square of \sqrt{3} is 3.
\frac{\sqrt{33}}{3}\times \frac{\left(\sqrt{3}+\sqrt{2}\right)^{2}}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
To multiply \sqrt{11} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{33}}{3}\times \frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+\sqrt{2}\right)^{2}.
\frac{\sqrt{33}}{3}\times \frac{3+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
The square of \sqrt{3} is 3.
\frac{\sqrt{33}}{3}\times \frac{3+2\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{33}}{3}\times \frac{3+2\sqrt{6}+2}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
The square of \sqrt{2} is 2.
\frac{\sqrt{33}}{3}\times \frac{5+2\sqrt{6}}{\sqrt{22}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
Add 3 and 2 to get 5.
\frac{\sqrt{33}}{3}\times \frac{\left(5+2\sqrt{6}\right)\sqrt{22}}{\left(\sqrt{22}\right)^{2}}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
Rationalize the denominator of \frac{5+2\sqrt{6}}{\sqrt{22}} by multiplying numerator and denominator by \sqrt{22}.
\frac{\sqrt{33}}{3}\times \frac{\left(5+2\sqrt{6}\right)\sqrt{22}}{22}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
The square of \sqrt{22} is 22.
\frac{\sqrt{33}\left(5+2\sqrt{6}\right)\sqrt{22}}{3\times 22}+\frac{\sqrt{6}}{3\sqrt{\left(-2\right)^{2}}}
Multiply \frac{\sqrt{33}}{3} times \frac{\left(5+2\sqrt{6}\right)\sqrt{22}}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{33}\left(5+2\sqrt{6}\right)\sqrt{22}}{3\times 22}+\frac{\sqrt{6}}{3\sqrt{4}}
Calculate -2 to the power of 2 and get 4.
\frac{\sqrt{33}\left(5+2\sqrt{6}\right)\sqrt{22}}{3\times 22}+\frac{\sqrt{6}}{3\times 2}
Calculate the square root of 4 and get 2.
\frac{\sqrt{33}\left(5+2\sqrt{6}\right)\sqrt{22}}{3\times 22}+\frac{\sqrt{6}}{6}
Multiply 3 and 2 to get 6.
\frac{\sqrt{33}\left(5+2\sqrt{6}\right)\sqrt{22}}{66}+\frac{11\sqrt{6}}{66}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\times 22 and 6 is 66. Multiply \frac{\sqrt{6}}{6} times \frac{11}{11}.
\frac{\sqrt{33}\left(5+2\sqrt{6}\right)\sqrt{22}+11\sqrt{6}}{66}
Since \frac{\sqrt{33}\left(5+2\sqrt{6}\right)\sqrt{22}}{66} and \frac{11\sqrt{6}}{66} have the same denominator, add them by adding their numerators.
\frac{55\sqrt{6}+132+11\sqrt{6}}{66}
Do the multiplications in \sqrt{33}\left(5+2\sqrt{6}\right)\sqrt{22}+11\sqrt{6}.
\frac{66\sqrt{6}+132}{66}
Do the calculations in 55\sqrt{6}+132+11\sqrt{6}.
\sqrt{6}+2
Divide each term of 66\sqrt{6}+132 by 66 to get \sqrt{6}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}