Evaluate
\frac{\sqrt{23}}{2}-\frac{7}{4}\approx 0.647915762
Factor
\frac{2 \sqrt{23} - 7}{4} = 0.6479157616563596
Share
Copied to clipboard
\sqrt{\frac{1}{8}-\frac{\sqrt{20+\frac{1}{4}}}{-\frac{4}{5}}}-\frac{7}{4}
Anything divided by one gives itself.
\sqrt{\frac{1}{8}-\frac{\sqrt{\frac{80}{4}+\frac{1}{4}}}{-\frac{4}{5}}}-\frac{7}{4}
Convert 20 to fraction \frac{80}{4}.
\sqrt{\frac{1}{8}-\frac{\sqrt{\frac{80+1}{4}}}{-\frac{4}{5}}}-\frac{7}{4}
Since \frac{80}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1}{8}-\frac{\sqrt{\frac{81}{4}}}{-\frac{4}{5}}}-\frac{7}{4}
Add 80 and 1 to get 81.
\sqrt{\frac{1}{8}-\frac{\frac{9}{2}}{-\frac{4}{5}}}-\frac{7}{4}
Rewrite the square root of the division \frac{81}{4} as the division of square roots \frac{\sqrt{81}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\sqrt{\frac{1}{8}-\frac{9}{2}\left(-\frac{5}{4}\right)}-\frac{7}{4}
Divide \frac{9}{2} by -\frac{4}{5} by multiplying \frac{9}{2} by the reciprocal of -\frac{4}{5}.
\sqrt{\frac{1}{8}-\frac{9\left(-5\right)}{2\times 4}}-\frac{7}{4}
Multiply \frac{9}{2} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{1}{8}-\frac{-45}{8}}-\frac{7}{4}
Do the multiplications in the fraction \frac{9\left(-5\right)}{2\times 4}.
\sqrt{\frac{1}{8}-\left(-\frac{45}{8}\right)}-\frac{7}{4}
Fraction \frac{-45}{8} can be rewritten as -\frac{45}{8} by extracting the negative sign.
\sqrt{\frac{1}{8}+\frac{45}{8}}-\frac{7}{4}
The opposite of -\frac{45}{8} is \frac{45}{8}.
\sqrt{\frac{1+45}{8}}-\frac{7}{4}
Since \frac{1}{8} and \frac{45}{8} have the same denominator, add them by adding their numerators.
\sqrt{\frac{46}{8}}-\frac{7}{4}
Add 1 and 45 to get 46.
\sqrt{\frac{23}{4}}-\frac{7}{4}
Reduce the fraction \frac{46}{8} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{23}}{\sqrt{4}}-\frac{7}{4}
Rewrite the square root of the division \sqrt{\frac{23}{4}} as the division of square roots \frac{\sqrt{23}}{\sqrt{4}}.
\frac{\sqrt{23}}{2}-\frac{7}{4}
Calculate the square root of 4 and get 2.
\frac{2\sqrt{23}}{4}-\frac{7}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{\sqrt{23}}{2} times \frac{2}{2}.
\frac{2\sqrt{23}-7}{4}
Since \frac{2\sqrt{23}}{4} and \frac{7}{4} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}