Evaluate
2x+\sqrt{6}
Differentiate w.r.t. x
2
Graph
Share
Copied to clipboard
\frac{\sqrt{1}}{\sqrt{3}}x\sqrt{12}+\frac{\sqrt{6}}{\sqrt{2}}\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}x\sqrt{12}+\frac{\sqrt{6}}{\sqrt{2}}\sqrt{2}
Calculate the square root of 1 and get 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}x\sqrt{12}+\frac{\sqrt{6}}{\sqrt{2}}\sqrt{2}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{3}x\sqrt{12}+\frac{\sqrt{6}}{\sqrt{2}}\sqrt{2}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{3}x\times 2\sqrt{3}+\frac{\sqrt{6}}{\sqrt{2}}\sqrt{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\sqrt{3}x}{3}\times 2\sqrt{3}+\frac{\sqrt{6}}{\sqrt{2}}\sqrt{2}
Express \frac{\sqrt{3}}{3}x as a single fraction.
\frac{\sqrt{3}x\times 2}{3}\sqrt{3}+\frac{\sqrt{6}}{\sqrt{2}}\sqrt{2}
Express \frac{\sqrt{3}x}{3}\times 2 as a single fraction.
\frac{\sqrt{3}x\times 2\sqrt{3}}{3}+\frac{\sqrt{6}}{\sqrt{2}}\sqrt{2}
Express \frac{\sqrt{3}x\times 2}{3}\sqrt{3} as a single fraction.
\frac{\sqrt{3}x\times 2\sqrt{3}}{3}+\sqrt{3}\sqrt{2}
Rewrite the division of square roots \frac{\sqrt{6}}{\sqrt{2}} as the square root of the division \sqrt{\frac{6}{2}} and perform the division.
\frac{\sqrt{3}x\times 2\sqrt{3}}{3}+\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{3}x\times 2\sqrt{3}}{3}+\frac{3\sqrt{6}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{3}{3}.
\frac{\sqrt{3}x\times 2\sqrt{3}+3\sqrt{6}}{3}
Since \frac{\sqrt{3}x\times 2\sqrt{3}}{3} and \frac{3\sqrt{6}}{3} have the same denominator, add them by adding their numerators.
\frac{6x+3\sqrt{6}}{3}
Do the multiplications in \sqrt{3}x\times 2\sqrt{3}+3\sqrt{6}.
2x+\sqrt{6}
Divide each term of 6x+3\sqrt{6} by 3 to get 2x+\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}