Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{1}}{\sqrt{3}}\sqrt{6}-\sqrt{8}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}\sqrt{6}-\sqrt{8}
Calculate the square root of 1 and get 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{6}-\sqrt{8}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{3}\sqrt{6}-\sqrt{8}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\sqrt{6}}{3}-\sqrt{8}
Express \frac{\sqrt{3}}{3}\sqrt{6} as a single fraction.
\frac{\sqrt{3}\sqrt{6}}{3}-2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{3}\sqrt{6}}{3}+\frac{3\left(-2\right)\sqrt{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{2} times \frac{3}{3}.
\frac{\sqrt{3}\sqrt{6}+3\left(-2\right)\sqrt{2}}{3}
Since \frac{\sqrt{3}\sqrt{6}}{3} and \frac{3\left(-2\right)\sqrt{2}}{3} have the same denominator, add them by adding their numerators.
\frac{3\sqrt{2}-6\sqrt{2}}{3}
Do the multiplications in \sqrt{3}\sqrt{6}+3\left(-2\right)\sqrt{2}.
\frac{-3\sqrt{2}}{3}
Do the calculations in 3\sqrt{2}-6\sqrt{2}.
-\sqrt{2}
Cancel out 3 and 3.