Evaluate
\frac{28\sqrt{3}}{3}\approx 16.165807537
Share
Copied to clipboard
\frac{\sqrt{1}}{\sqrt{3}}+\sqrt{27}\sqrt{9}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}+\sqrt{27}\sqrt{9}
Calculate the square root of 1 and get 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{27}\sqrt{9}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{3}+\sqrt{27}\sqrt{9}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{3}+\sqrt{9}\sqrt{3}\sqrt{9}
Factor 27=9\times 3. Rewrite the square root of the product \sqrt{9\times 3} as the product of square roots \sqrt{9}\sqrt{3}.
\frac{\sqrt{3}}{3}+9\sqrt{3}
Multiply \sqrt{9} and \sqrt{9} to get 9.
\frac{28}{3}\sqrt{3}
Combine \frac{\sqrt{3}}{3} and 9\sqrt{3} to get \frac{28}{3}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}