Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{1}}{\sqrt{3}}+\sqrt{27}\sqrt{9}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}+\sqrt{27}\sqrt{9}
Calculate the square root of 1 and get 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{27}\sqrt{9}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{3}+\sqrt{27}\sqrt{9}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{3}+\sqrt{9}\sqrt{3}\sqrt{9}
Factor 27=9\times 3. Rewrite the square root of the product \sqrt{9\times 3} as the product of square roots \sqrt{9}\sqrt{3}.
\frac{\sqrt{3}}{3}+9\sqrt{3}
Multiply \sqrt{9} and \sqrt{9} to get 9.
\frac{28}{3}\sqrt{3}
Combine \frac{\sqrt{3}}{3} and 9\sqrt{3} to get \frac{28}{3}\sqrt{3}.