\sqrt { \frac { 1 } { 20 - 1 } [ 112 - \frac { ( 38 ) ^ { 2 } } { 20 } }
Evaluate
\frac{\sqrt{18905}}{95}\approx 1.447320573
Share
Copied to clipboard
\sqrt{\frac{1}{19}\left(112-\frac{38^{2}}{20}\right)}
Subtract 1 from 20 to get 19.
\sqrt{\frac{1}{19}\left(112-\frac{1444}{20}\right)}
Calculate 38 to the power of 2 and get 1444.
\sqrt{\frac{1}{19}\left(112-\frac{361}{5}\right)}
Reduce the fraction \frac{1444}{20} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{1}{19}\left(\frac{560}{5}-\frac{361}{5}\right)}
Convert 112 to fraction \frac{560}{5}.
\sqrt{\frac{1}{19}\times \frac{560-361}{5}}
Since \frac{560}{5} and \frac{361}{5} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{19}\times \frac{199}{5}}
Subtract 361 from 560 to get 199.
\sqrt{\frac{1\times 199}{19\times 5}}
Multiply \frac{1}{19} times \frac{199}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{199}{95}}
Do the multiplications in the fraction \frac{1\times 199}{19\times 5}.
\frac{\sqrt{199}}{\sqrt{95}}
Rewrite the square root of the division \sqrt{\frac{199}{95}} as the division of square roots \frac{\sqrt{199}}{\sqrt{95}}.
\frac{\sqrt{199}\sqrt{95}}{\left(\sqrt{95}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{199}}{\sqrt{95}} by multiplying numerator and denominator by \sqrt{95}.
\frac{\sqrt{199}\sqrt{95}}{95}
The square of \sqrt{95} is 95.
\frac{\sqrt{18905}}{95}
To multiply \sqrt{199} and \sqrt{95}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}