Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{1}{19}\left(112-\frac{38^{2}}{20}\right)}
Subtract 1 from 20 to get 19.
\sqrt{\frac{1}{19}\left(112-\frac{1444}{20}\right)}
Calculate 38 to the power of 2 and get 1444.
\sqrt{\frac{1}{19}\left(112-\frac{361}{5}\right)}
Reduce the fraction \frac{1444}{20} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{1}{19}\left(\frac{560}{5}-\frac{361}{5}\right)}
Convert 112 to fraction \frac{560}{5}.
\sqrt{\frac{1}{19}\times \frac{560-361}{5}}
Since \frac{560}{5} and \frac{361}{5} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{19}\times \frac{199}{5}}
Subtract 361 from 560 to get 199.
\sqrt{\frac{1\times 199}{19\times 5}}
Multiply \frac{1}{19} times \frac{199}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{199}{95}}
Do the multiplications in the fraction \frac{1\times 199}{19\times 5}.
\frac{\sqrt{199}}{\sqrt{95}}
Rewrite the square root of the division \sqrt{\frac{199}{95}} as the division of square roots \frac{\sqrt{199}}{\sqrt{95}}.
\frac{\sqrt{199}\sqrt{95}}{\left(\sqrt{95}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{199}}{\sqrt{95}} by multiplying numerator and denominator by \sqrt{95}.
\frac{\sqrt{199}\sqrt{95}}{95}
The square of \sqrt{95} is 95.
\frac{\sqrt{18905}}{95}
To multiply \sqrt{199} and \sqrt{95}, multiply the numbers under the square root.