Evaluate
\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\approx 0.298858491
Share
Copied to clipboard
\frac{\sqrt{1}}{\sqrt{2}}-\sqrt{\frac{1}{6}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{1}{\sqrt{2}}-\sqrt{\frac{1}{6}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\sqrt{\frac{1}{6}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}-\sqrt{\frac{1}{6}}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2}-\frac{\sqrt{1}}{\sqrt{6}}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{6}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{3\sqrt{2}}{6}-\frac{\sqrt{6}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 6 is 6. Multiply \frac{\sqrt{2}}{2} times \frac{3}{3}.
\frac{3\sqrt{2}-\sqrt{6}}{6}
Since \frac{3\sqrt{2}}{6} and \frac{\sqrt{6}}{6} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}