Evaluate
\sqrt{3}-1\approx 0.732050808
Share
Copied to clipboard
\frac{\sqrt{1}}{\sqrt{2}}\sqrt{6}-\tan(45)
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{1}{\sqrt{2}}\sqrt{6}-\tan(45)
Calculate the square root of 1 and get 1.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{6}-\tan(45)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}\sqrt{6}-\tan(45)
The square of \sqrt{2} is 2.
\frac{\sqrt{2}\sqrt{6}}{2}-\tan(45)
Express \frac{\sqrt{2}}{2}\sqrt{6} as a single fraction.
\frac{\sqrt{2}\sqrt{6}}{2}-1
Get the value of \tan(45) from trigonometric values table.
\frac{\sqrt{2}\sqrt{6}}{2}-\frac{2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\sqrt{2}\sqrt{6}-2}{2}
Since \frac{\sqrt{2}\sqrt{6}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{3}-2}{2}
Do the multiplications in \sqrt{2}\sqrt{6}-2.
\sqrt{3}-1
Divide each term of 2\sqrt{3}-2 by 2 to get \sqrt{3}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}