Evaluate
\frac{\sqrt{2}\left(2\sqrt{3}+3\right)}{6}\approx 1.523603362
Share
Copied to clipboard
\frac{\sqrt{1}}{\sqrt{2}}+\sqrt{\frac{2}{3}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{1}{\sqrt{2}}+\sqrt{\frac{2}{3}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{\frac{2}{3}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}+\sqrt{\frac{2}{3}}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\sqrt{2}}{2}+\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}}{2}+\frac{\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\sqrt{2}}{6}+\frac{2\sqrt{6}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{\sqrt{6}}{3} times \frac{2}{2}.
\frac{3\sqrt{2}+2\sqrt{6}}{6}
Since \frac{3\sqrt{2}}{6} and \frac{2\sqrt{6}}{6} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}