Evaluate
\frac{\sqrt{301536896070458}}{100000000}\approx 0.173648178
Share
Copied to clipboard
\sqrt{\frac{1 + -0.9396926207859084}{2}}
Evaluate trigonometric functions in the problem
\sqrt{\frac{0.0603073792140916}{2}}
Subtract 0.9396926207859084 from 1 to get 0.0603073792140916.
\sqrt{\frac{603073792140916}{20000000000000000}}
Expand \frac{0.0603073792140916}{2} by multiplying both numerator and the denominator by 10000000000000000.
\sqrt{\frac{150768448035229}{5000000000000000}}
Reduce the fraction \frac{603073792140916}{20000000000000000} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{150768448035229}}{\sqrt{5000000000000000}}
Rewrite the square root of the division \sqrt{\frac{150768448035229}{5000000000000000}} as the division of square roots \frac{\sqrt{150768448035229}}{\sqrt{5000000000000000}}.
\frac{\sqrt{150768448035229}}{50000000\sqrt{2}}
Factor 5000000000000000=50000000^{2}\times 2. Rewrite the square root of the product \sqrt{50000000^{2}\times 2} as the product of square roots \sqrt{50000000^{2}}\sqrt{2}. Take the square root of 50000000^{2}.
\frac{\sqrt{150768448035229}\sqrt{2}}{50000000\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{150768448035229}}{50000000\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{150768448035229}\sqrt{2}}{50000000\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{301536896070458}}{50000000\times 2}
To multiply \sqrt{150768448035229} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{301536896070458}}{100000000}
Multiply 50000000 and 2 to get 100000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}