Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{4}{500}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Expand \frac{0,04}{5} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{1}{125}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Reduce the fraction \frac{4}{500} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{1}}{\sqrt{125}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Rewrite the square root of the division \sqrt{\frac{1}{125}} as the division of square roots \frac{\sqrt{1}}{\sqrt{125}}.
\frac{1}{\sqrt{125}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Calculate the square root of 1 and get 1.
\frac{1}{5\sqrt{5}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{\sqrt{5}}{5\left(\sqrt{5}\right)^{2}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Rationalize the denominator of \frac{1}{5\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{5\times 5}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{25}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Multiply 5 and 5 to get 25.
\frac{\sqrt{5}}{25}-2-\sqrt{1-\frac{16}{25}}
Calculate \sqrt[3]{-8} and get -2.
\frac{\sqrt{5}}{25}-2-\sqrt{\frac{9}{25}}
Subtract \frac{16}{25} from 1 to get \frac{9}{25}.
\frac{\sqrt{5}}{25}-2-\frac{3}{5}
Rewrite the square root of the division \frac{9}{25} as the division of square roots \frac{\sqrt{9}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{\sqrt{5}}{25}-\frac{13}{5}
Subtract \frac{3}{5} from -2 to get -\frac{13}{5}.
\frac{\sqrt{5}}{25}-\frac{13\times 5}{25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 5 is 25. Multiply \frac{13}{5} times \frac{5}{5}.
\frac{\sqrt{5}-13\times 5}{25}
Since \frac{\sqrt{5}}{25} and \frac{13\times 5}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{5}-65}{25}
Do the multiplications in \sqrt{5}-13\times 5.