\sqrt { \frac { 0,04 } { 5 } } + \sqrt[ 3 ] { - 8 } - \sqrt { 1 - \frac { 16 } { 25 } }
Evaluate
\frac{\sqrt{5}}{25}-2,6\approx -2.510557281
Factor
\frac{\sqrt{5} - 65}{25} = -2.5105572809000085
Share
Copied to clipboard
\sqrt{\frac{4}{500}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Expand \frac{0,04}{5} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{1}{125}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Reduce the fraction \frac{4}{500} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{1}}{\sqrt{125}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Rewrite the square root of the division \sqrt{\frac{1}{125}} as the division of square roots \frac{\sqrt{1}}{\sqrt{125}}.
\frac{1}{\sqrt{125}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Calculate the square root of 1 and get 1.
\frac{1}{5\sqrt{5}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{\sqrt{5}}{5\left(\sqrt{5}\right)^{2}}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Rationalize the denominator of \frac{1}{5\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{5\times 5}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{25}+\sqrt[3]{-8}-\sqrt{1-\frac{16}{25}}
Multiply 5 and 5 to get 25.
\frac{\sqrt{5}}{25}-2-\sqrt{1-\frac{16}{25}}
Calculate \sqrt[3]{-8} and get -2.
\frac{\sqrt{5}}{25}-2-\sqrt{\frac{9}{25}}
Subtract \frac{16}{25} from 1 to get \frac{9}{25}.
\frac{\sqrt{5}}{25}-2-\frac{3}{5}
Rewrite the square root of the division \frac{9}{25} as the division of square roots \frac{\sqrt{9}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{\sqrt{5}}{25}-\frac{13}{5}
Subtract \frac{3}{5} from -2 to get -\frac{13}{5}.
\frac{\sqrt{5}}{25}-\frac{13\times 5}{25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 5 is 25. Multiply \frac{13}{5} times \frac{5}{5}.
\frac{\sqrt{5}-13\times 5}{25}
Since \frac{\sqrt{5}}{25} and \frac{13\times 5}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{5}-65}{25}
Do the multiplications in \sqrt{5}-13\times 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}