Evaluate
\frac{2\sqrt{55}}{275}\approx 0.053935989
Share
Copied to clipboard
\sqrt{\frac{0.8\times 0.2}{55}}
Subtract 0.8 from 1 to get 0.2.
\sqrt{\frac{0.16}{55}}
Multiply 0.8 and 0.2 to get 0.16.
\sqrt{\frac{16}{5500}}
Expand \frac{0.16}{55} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{4}{1375}}
Reduce the fraction \frac{16}{5500} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{4}}{\sqrt{1375}}
Rewrite the square root of the division \sqrt{\frac{4}{1375}} as the division of square roots \frac{\sqrt{4}}{\sqrt{1375}}.
\frac{2}{\sqrt{1375}}
Calculate the square root of 4 and get 2.
\frac{2}{5\sqrt{55}}
Factor 1375=5^{2}\times 55. Rewrite the square root of the product \sqrt{5^{2}\times 55} as the product of square roots \sqrt{5^{2}}\sqrt{55}. Take the square root of 5^{2}.
\frac{2\sqrt{55}}{5\left(\sqrt{55}\right)^{2}}
Rationalize the denominator of \frac{2}{5\sqrt{55}} by multiplying numerator and denominator by \sqrt{55}.
\frac{2\sqrt{55}}{5\times 55}
The square of \sqrt{55} is 55.
\frac{2\sqrt{55}}{275}
Multiply 5 and 55 to get 275.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}