Evaluate
\frac{\sqrt{332630}}{1798000000000000000000}\approx 3.207679883 \cdot 10^{-19}
Share
Copied to clipboard
\sqrt{\frac{3.7\times \left(5\times 10^{-10}\right)^{2}}{8.99\times 10^{18}}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\sqrt{\frac{3.7\times \left(5\times \frac{1}{10000000000}\right)^{2}}{8.99\times 10^{18}}}
Calculate 10 to the power of -10 and get \frac{1}{10000000000}.
\sqrt{\frac{3.7\times \left(\frac{1}{2000000000}\right)^{2}}{8.99\times 10^{18}}}
Multiply 5 and \frac{1}{10000000000} to get \frac{1}{2000000000}.
\sqrt{\frac{3.7\times \frac{1}{4000000000000000000}}{8.99\times 10^{18}}}
Calculate \frac{1}{2000000000} to the power of 2 and get \frac{1}{4000000000000000000}.
\sqrt{\frac{\frac{37}{40000000000000000000}}{8.99\times 10^{18}}}
Multiply 3.7 and \frac{1}{4000000000000000000} to get \frac{37}{40000000000000000000}.
\sqrt{\frac{\frac{37}{40000000000000000000}}{8.99\times 1000000000000000000}}
Calculate 10 to the power of 18 and get 1000000000000000000.
\sqrt{\frac{\frac{37}{40000000000000000000}}{8990000000000000000}}
Multiply 8.99 and 1000000000000000000 to get 8990000000000000000.
\sqrt{\frac{37}{40000000000000000000\times 8990000000000000000}}
Express \frac{\frac{37}{40000000000000000000}}{8990000000000000000} as a single fraction.
\sqrt{\frac{37}{359600000000000000000000000000000000000}}
Multiply 40000000000000000000 and 8990000000000000000 to get 359600000000000000000000000000000000000.
\frac{\sqrt{37}}{\sqrt{359600000000000000000000000000000000000}}
Rewrite the square root of the division \sqrt{\frac{37}{359600000000000000000000000000000000000}} as the division of square roots \frac{\sqrt{37}}{\sqrt{359600000000000000000000000000000000000}}.
\frac{\sqrt{37}}{200000000000000000\sqrt{8990}}
Factor 359600000000000000000000000000000000000=200000000000000000^{2}\times 8990. Rewrite the square root of the product \sqrt{200000000000000000^{2}\times 8990} as the product of square roots \sqrt{200000000000000000^{2}}\sqrt{8990}. Take the square root of 200000000000000000^{2}.
\frac{\sqrt{37}\sqrt{8990}}{200000000000000000\left(\sqrt{8990}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{37}}{200000000000000000\sqrt{8990}} by multiplying numerator and denominator by \sqrt{8990}.
\frac{\sqrt{37}\sqrt{8990}}{200000000000000000\times 8990}
The square of \sqrt{8990} is 8990.
\frac{\sqrt{332630}}{200000000000000000\times 8990}
To multiply \sqrt{37} and \sqrt{8990}, multiply the numbers under the square root.
\frac{\sqrt{332630}}{1798000000000000000000}
Multiply 200000000000000000 and 8990 to get 1798000000000000000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}