Evaluate
\frac{\sqrt{10}}{10}\approx 0.316227766
Share
Copied to clipboard
\sqrt{\frac{\frac{1\times 3}{3\times 7}+\frac{5}{14}+\left(\frac{3}{2}\right)^{2}\times \frac{5}{9}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Multiply \frac{1}{3} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{1}{7}+\frac{5}{14}+\left(\frac{3}{2}\right)^{2}\times \frac{5}{9}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Cancel out 3 in both numerator and denominator.
\sqrt{\frac{\frac{2}{14}+\frac{5}{14}+\left(\frac{3}{2}\right)^{2}\times \frac{5}{9}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Least common multiple of 7 and 14 is 14. Convert \frac{1}{7} and \frac{5}{14} to fractions with denominator 14.
\sqrt{\frac{\frac{2+5}{14}+\left(\frac{3}{2}\right)^{2}\times \frac{5}{9}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Since \frac{2}{14} and \frac{5}{14} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{7}{14}+\left(\frac{3}{2}\right)^{2}\times \frac{5}{9}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Add 2 and 5 to get 7.
\sqrt{\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2}\times \frac{5}{9}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
\sqrt{\frac{\frac{1}{2}+\frac{9}{4}\times \frac{5}{9}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\sqrt{\frac{\frac{1}{2}+\frac{9\times 5}{4\times 9}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Multiply \frac{9}{4} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{1}{2}+\frac{5}{4}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Cancel out 9 in both numerator and denominator.
\sqrt{\frac{\frac{2}{4}+\frac{5}{4}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{5}{4} to fractions with denominator 4.
\sqrt{\frac{\frac{2+5}{4}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Since \frac{2}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{7}{4}-\frac{3}{8}\times \frac{4}{3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Add 2 and 5 to get 7.
\sqrt{\frac{\frac{7}{4}-\frac{3\times 4}{8\times 3}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Multiply \frac{3}{8} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{7}{4}-\frac{4}{8}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Cancel out 3 in both numerator and denominator.
\sqrt{\frac{\frac{7}{4}-\frac{1}{2}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{\frac{7}{4}-\frac{2}{4}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Least common multiple of 4 and 2 is 4. Convert \frac{7}{4} and \frac{1}{2} to fractions with denominator 4.
\sqrt{\frac{\frac{7-2}{4}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Since \frac{7}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{5}{4}}{\frac{\frac{9}{4}}{\frac{1}{5}}+2-\frac{3}{4}}}
Subtract 2 from 7 to get 5.
\sqrt{\frac{\frac{5}{4}}{\frac{9}{4}\times 5+2-\frac{3}{4}}}
Divide \frac{9}{4} by \frac{1}{5} by multiplying \frac{9}{4} by the reciprocal of \frac{1}{5}.
\sqrt{\frac{\frac{5}{4}}{\frac{9\times 5}{4}+2-\frac{3}{4}}}
Express \frac{9}{4}\times 5 as a single fraction.
\sqrt{\frac{\frac{5}{4}}{\frac{45}{4}+2-\frac{3}{4}}}
Multiply 9 and 5 to get 45.
\sqrt{\frac{\frac{5}{4}}{\frac{45}{4}+\frac{8}{4}-\frac{3}{4}}}
Convert 2 to fraction \frac{8}{4}.
\sqrt{\frac{\frac{5}{4}}{\frac{45+8}{4}-\frac{3}{4}}}
Since \frac{45}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{5}{4}}{\frac{53}{4}-\frac{3}{4}}}
Add 45 and 8 to get 53.
\sqrt{\frac{\frac{5}{4}}{\frac{53-3}{4}}}
Since \frac{53}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{5}{4}}{\frac{50}{4}}}
Subtract 3 from 53 to get 50.
\sqrt{\frac{\frac{5}{4}}{\frac{25}{2}}}
Reduce the fraction \frac{50}{4} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{5}{4}\times \frac{2}{25}}
Divide \frac{5}{4} by \frac{25}{2} by multiplying \frac{5}{4} by the reciprocal of \frac{25}{2}.
\sqrt{\frac{5\times 2}{4\times 25}}
Multiply \frac{5}{4} times \frac{2}{25} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{10}{100}}
Do the multiplications in the fraction \frac{5\times 2}{4\times 25}.
\sqrt{\frac{1}{10}}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\frac{\sqrt{1}}{\sqrt{10}}
Rewrite the square root of the division \sqrt{\frac{1}{10}} as the division of square roots \frac{\sqrt{1}}{\sqrt{10}}.
\frac{1}{\sqrt{10}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{10}}{10}
The square of \sqrt{10} is 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}