Evaluate
\frac{\sqrt{155}}{5}\approx 2.48997992
Share
Copied to clipboard
\sqrt{\frac{\frac{1}{6}+\frac{1}{5}\left(3+\frac{1}{3}\right)}{\left(\frac{1}{4}\right)^{2}+\left(\frac{3}{10}\right)^{2}\left(2+\frac{1}{2}\right)^{2}}\times \frac{9}{10}+5}
Multiply \frac{1}{9} and \frac{3}{2} to get \frac{1}{6}.
\sqrt{\frac{\frac{1}{6}+\frac{1}{5}\times \frac{10}{3}}{\left(\frac{1}{4}\right)^{2}+\left(\frac{3}{10}\right)^{2}\left(2+\frac{1}{2}\right)^{2}}\times \frac{9}{10}+5}
Add 3 and \frac{1}{3} to get \frac{10}{3}.
\sqrt{\frac{\frac{1}{6}+\frac{2}{3}}{\left(\frac{1}{4}\right)^{2}+\left(\frac{3}{10}\right)^{2}\left(2+\frac{1}{2}\right)^{2}}\times \frac{9}{10}+5}
Multiply \frac{1}{5} and \frac{10}{3} to get \frac{2}{3}.
\sqrt{\frac{\frac{5}{6}}{\left(\frac{1}{4}\right)^{2}+\left(\frac{3}{10}\right)^{2}\left(2+\frac{1}{2}\right)^{2}}\times \frac{9}{10}+5}
Add \frac{1}{6} and \frac{2}{3} to get \frac{5}{6}.
\sqrt{\frac{\frac{5}{6}}{\frac{1}{16}+\left(\frac{3}{10}\right)^{2}\left(2+\frac{1}{2}\right)^{2}}\times \frac{9}{10}+5}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\sqrt{\frac{\frac{5}{6}}{\frac{1}{16}+\frac{9}{100}\left(2+\frac{1}{2}\right)^{2}}\times \frac{9}{10}+5}
Calculate \frac{3}{10} to the power of 2 and get \frac{9}{100}.
\sqrt{\frac{\frac{5}{6}}{\frac{1}{16}+\frac{9}{100}\times \left(\frac{5}{2}\right)^{2}}\times \frac{9}{10}+5}
Add 2 and \frac{1}{2} to get \frac{5}{2}.
\sqrt{\frac{\frac{5}{6}}{\frac{1}{16}+\frac{9}{100}\times \frac{25}{4}}\times \frac{9}{10}+5}
Calculate \frac{5}{2} to the power of 2 and get \frac{25}{4}.
\sqrt{\frac{\frac{5}{6}}{\frac{1}{16}+\frac{9}{16}}\times \frac{9}{10}+5}
Multiply \frac{9}{100} and \frac{25}{4} to get \frac{9}{16}.
\sqrt{\frac{\frac{5}{6}}{\frac{5}{8}}\times \frac{9}{10}+5}
Add \frac{1}{16} and \frac{9}{16} to get \frac{5}{8}.
\sqrt{\frac{5}{6}\times \frac{8}{5}\times \frac{9}{10}+5}
Divide \frac{5}{6} by \frac{5}{8} by multiplying \frac{5}{6} by the reciprocal of \frac{5}{8}.
\sqrt{\frac{4}{3}\times \frac{9}{10}+5}
Multiply \frac{5}{6} and \frac{8}{5} to get \frac{4}{3}.
\sqrt{\frac{6}{5}+5}
Multiply \frac{4}{3} and \frac{9}{10} to get \frac{6}{5}.
\sqrt{\frac{31}{5}}
Add \frac{6}{5} and 5 to get \frac{31}{5}.
\frac{\sqrt{31}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{31}{5}} as the division of square roots \frac{\sqrt{31}}{\sqrt{5}}.
\frac{\sqrt{31}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{31}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{31}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{155}}{5}
To multiply \sqrt{31} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}