Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\left(2-\frac{1}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Multiply \frac{3}{2} and \frac{3}{10} to get \frac{9}{20}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \left(\frac{5}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Subtract \frac{1}{3} from 2 to get \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \frac{25}{9}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Calculate \frac{5}{3} to the power of 2 and get \frac{25}{9}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{5}{3}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Multiply \frac{3}{5} and \frac{25}{9} to get \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{2}{15}\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Subtract \frac{5}{3} from \frac{9}{5} to get \frac{2}{15}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{1}{5}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Multiply \frac{2}{15} and \frac{3}{2} to get \frac{1}{5}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Add \frac{9}{20} and \frac{1}{5} to get \frac{13}{20}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{13}{5}}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Add \frac{3}{5} and 2 to get \frac{13}{5}.
\sqrt{\frac{\frac{13}{20}\times \frac{5}{13}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Divide \frac{13}{20} by \frac{13}{5} by multiplying \frac{13}{20} by the reciprocal of \frac{13}{5}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Multiply \frac{13}{20} and \frac{5}{13} to get \frac{1}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\times \frac{13}{4}\right)}}
Add \frac{1}{4} and 3 to get \frac{13}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{1}{2}\right)}}
Multiply \frac{2}{13} and \frac{13}{4} to get \frac{1}{2}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\times \frac{2}{3}}}
Add \frac{1}{6} and \frac{1}{2} to get \frac{2}{3}.
\sqrt{\frac{\frac{1}{4}}{\frac{4}{9}}}
Multiply \frac{2}{3} and \frac{2}{3} to get \frac{4}{9}.
\sqrt{\frac{1}{4}\times \frac{9}{4}}
Divide \frac{1}{4} by \frac{4}{9} by multiplying \frac{1}{4} by the reciprocal of \frac{4}{9}.
\sqrt{\frac{9}{16}}
Multiply \frac{1}{4} and \frac{9}{4} to get \frac{9}{16}.
\frac{3}{4}
Rewrite the square root of the division \frac{9}{16} as the division of square roots \frac{\sqrt{9}}{\sqrt{16}}. Take the square root of both numerator and denominator.