Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{\left(\frac{1}{36}+\left(\frac{1}{3}\right)^{2}-\left(\frac{1}{3}-\frac{1}{6}\right)^{2}\right)\left(\frac{1}{2}+\left(10-\frac{1}{3}-\frac{4}{6}\right)^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Calculate \frac{1}{6} to the power of 2 and get \frac{1}{36}.
\sqrt{\left(\frac{1}{36}+\frac{1}{9}-\left(\frac{1}{3}-\frac{1}{6}\right)^{2}\right)\left(\frac{1}{2}+\left(10-\frac{1}{3}-\frac{4}{6}\right)^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\sqrt{\left(\frac{1}{36}+\frac{1}{9}-\left(\frac{1}{6}\right)^{2}\right)\left(\frac{1}{2}+\left(10-\frac{1}{3}-\frac{4}{6}\right)^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Subtract \frac{1}{6} from \frac{1}{3} to get \frac{1}{6}.
\sqrt{\left(\frac{1}{36}+\frac{1}{9}-\frac{1}{36}\right)\left(\frac{1}{2}+\left(10-\frac{1}{3}-\frac{4}{6}\right)^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Calculate \frac{1}{6} to the power of 2 and get \frac{1}{36}.
\sqrt{\left(\frac{1}{36}+\frac{1}{12}\right)\left(\frac{1}{2}+\left(10-\frac{1}{3}-\frac{4}{6}\right)^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Subtract \frac{1}{36} from \frac{1}{9} to get \frac{1}{12}.
\sqrt{\frac{1}{9}\left(\frac{1}{2}+\left(10-\frac{1}{3}-\frac{4}{6}\right)^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Add \frac{1}{36} and \frac{1}{12} to get \frac{1}{9}.
\sqrt{\frac{1}{9}\left(\frac{1}{2}+\left(\frac{29}{3}-\frac{4}{6}\right)^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Subtract \frac{1}{3} from 10 to get \frac{29}{3}.
\sqrt{\frac{1}{9}\left(\frac{1}{2}+\left(\frac{29}{3}-\frac{2}{3}\right)^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{1}{9}\left(\frac{1}{2}+9^{4}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Subtract \frac{2}{3} from \frac{29}{3} to get 9.
\sqrt{\frac{1}{9}\left(\frac{1}{2}+6561-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Calculate 9 to the power of 4 and get 6561.
\sqrt{\frac{1}{9}\left(\frac{13123}{2}-\frac{2}{3^{2}}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Add \frac{1}{2} and 6561 to get \frac{13123}{2}.
\sqrt{\frac{1}{9}\left(\frac{13123}{2}-\frac{2}{9}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Calculate 3 to the power of 2 and get 9.
\sqrt{\frac{1}{9}\left(\frac{118103}{18}-\left(\frac{1}{2}-\frac{1}{3}\right)^{2}\right)}
Subtract \frac{2}{9} from \frac{13123}{2} to get \frac{118103}{18}.
\sqrt{\frac{1}{9}\left(\frac{118103}{18}-\left(\frac{1}{6}\right)^{2}\right)}
Subtract \frac{1}{3} from \frac{1}{2} to get \frac{1}{6}.
\sqrt{\frac{1}{9}\left(\frac{118103}{18}-\frac{1}{36}\right)}
Calculate \frac{1}{6} to the power of 2 and get \frac{1}{36}.
\sqrt{\frac{1}{9}\times \frac{26245}{4}}
Subtract \frac{1}{36} from \frac{118103}{18} to get \frac{26245}{4}.
\sqrt{\frac{26245}{36}}
Multiply \frac{1}{9} and \frac{26245}{4} to get \frac{26245}{36}.
\frac{\sqrt{26245}}{\sqrt{36}}
Rewrite the square root of the division \sqrt{\frac{26245}{36}} as the division of square roots \frac{\sqrt{26245}}{\sqrt{36}}.
\frac{\sqrt{26245}}{6}
Calculate the square root of 36 and get 6.