Evaluate
\frac{3}{8}=0.375
Factor
\frac{3}{2 ^ {3}} = 0.375
Share
Copied to clipboard
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\left(\frac{1}{3}+\frac{1\times 12}{4\times 7}\right)-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Multiply \frac{1}{4} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\left(\frac{1}{3}+\frac{12}{28}\right)-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Do the multiplications in the fraction \frac{1\times 12}{4\times 7}.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\left(\frac{1}{3}+\frac{3}{7}\right)-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Reduce the fraction \frac{12}{28} to lowest terms by extracting and canceling out 4.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\left(\frac{7}{21}+\frac{9}{21}\right)-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Least common multiple of 3 and 7 is 21. Convert \frac{1}{3} and \frac{3}{7} to fractions with denominator 21.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\times \frac{7+9}{21}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Since \frac{7}{21} and \frac{9}{21} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\times \frac{16}{21}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Add 7 and 9 to get 16.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3\times 16}{4\times 21}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Multiply \frac{3}{4} times \frac{16}{21} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{48}{84}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Do the multiplications in the fraction \frac{3\times 16}{4\times 21}.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{4}{7}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Reduce the fraction \frac{48}{84} to lowest terms by extracting and canceling out 12.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{7}{7}+\frac{4}{7}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Convert 1 to fraction \frac{7}{7}.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{7+4}{7}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Since \frac{7}{7} and \frac{4}{7} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{11}{7}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Add 7 and 4 to get 11.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{11-1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Since \frac{11}{7} and \frac{1}{7} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{10}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Subtract 1 from 11 to get 10.
\sqrt{\left(\frac{2}{3}+\frac{5}{4}\times \frac{7}{10}\right)\times \frac{3}{37}+\frac{1}{64}}
Divide \frac{5}{4} by \frac{10}{7} by multiplying \frac{5}{4} by the reciprocal of \frac{10}{7}.
\sqrt{\left(\frac{2}{3}+\frac{5\times 7}{4\times 10}\right)\times \frac{3}{37}+\frac{1}{64}}
Multiply \frac{5}{4} times \frac{7}{10} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{2}{3}+\frac{35}{40}\right)\times \frac{3}{37}+\frac{1}{64}}
Do the multiplications in the fraction \frac{5\times 7}{4\times 10}.
\sqrt{\left(\frac{2}{3}+\frac{7}{8}\right)\times \frac{3}{37}+\frac{1}{64}}
Reduce the fraction \frac{35}{40} to lowest terms by extracting and canceling out 5.
\sqrt{\left(\frac{16}{24}+\frac{21}{24}\right)\times \frac{3}{37}+\frac{1}{64}}
Least common multiple of 3 and 8 is 24. Convert \frac{2}{3} and \frac{7}{8} to fractions with denominator 24.
\sqrt{\frac{16+21}{24}\times \frac{3}{37}+\frac{1}{64}}
Since \frac{16}{24} and \frac{21}{24} have the same denominator, add them by adding their numerators.
\sqrt{\frac{37}{24}\times \frac{3}{37}+\frac{1}{64}}
Add 16 and 21 to get 37.
\sqrt{\frac{37\times 3}{24\times 37}+\frac{1}{64}}
Multiply \frac{37}{24} times \frac{3}{37} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{3}{24}+\frac{1}{64}}
Cancel out 37 in both numerator and denominator.
\sqrt{\frac{1}{8}+\frac{1}{64}}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{8}{64}+\frac{1}{64}}
Least common multiple of 8 and 64 is 64. Convert \frac{1}{8} and \frac{1}{64} to fractions with denominator 64.
\sqrt{\frac{8+1}{64}}
Since \frac{8}{64} and \frac{1}{64} have the same denominator, add them by adding their numerators.
\sqrt{\frac{9}{64}}
Add 8 and 1 to get 9.
\frac{3}{8}
Rewrite the square root of the division \frac{9}{64} as the division of square roots \frac{\sqrt{9}}{\sqrt{64}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}