Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{\frac{3}{4}}{\frac{2}{3}+\frac{5}{4}\times \frac{3}{5}}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{\frac{3}{4}}{\frac{2}{3}+\frac{5\times 3}{4\times 5}}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Multiply \frac{5}{4} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{\frac{3}{4}}{\frac{2}{3}+\frac{3}{4}}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Cancel out 5 in both numerator and denominator.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{\frac{3}{4}}{\frac{8}{12}+\frac{9}{12}}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Least common multiple of 3 and 4 is 12. Convert \frac{2}{3} and \frac{3}{4} to fractions with denominator 12.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{\frac{3}{4}}{\frac{8+9}{12}}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Since \frac{8}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{\frac{3}{4}}{\frac{17}{12}}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Add 8 and 9 to get 17.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{3}{4}\times \frac{12}{17}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Divide \frac{3}{4} by \frac{17}{12} by multiplying \frac{3}{4} by the reciprocal of \frac{17}{12}.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{3\times 12}{4\times 17}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Multiply \frac{3}{4} times \frac{12}{17} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{36}{68}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Do the multiplications in the fraction \frac{3\times 12}{4\times 17}.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{9}{17}+1}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Reduce the fraction \frac{36}{68} to lowest terms by extracting and canceling out 4.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{9}{17}+\frac{17}{17}}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Convert 1 to fraction \frac{17}{17}.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{9+17}{17}}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Since \frac{9}{17} and \frac{17}{17} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{1}{4}+\frac{\frac{13}{34}}{\frac{26}{17}}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Add 9 and 17 to get 26.
\sqrt{\left(\frac{1}{4}+\frac{13}{34}\times \frac{17}{26}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Divide \frac{13}{34} by \frac{26}{17} by multiplying \frac{13}{34} by the reciprocal of \frac{26}{17}.
\sqrt{\left(\frac{1}{4}+\frac{13\times 17}{34\times 26}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Multiply \frac{13}{34} times \frac{17}{26} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{1}{4}+\frac{221}{884}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Do the multiplications in the fraction \frac{13\times 17}{34\times 26}.
\sqrt{\left(\frac{1}{4}+\frac{1}{4}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Reduce the fraction \frac{221}{884} to lowest terms by extracting and canceling out 221.
\sqrt{\left(\frac{1+1}{4}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Since \frac{1}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{2}{4}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Add 1 and 1 to get 2.
\sqrt{\left(\frac{1}{2}+\frac{5}{2}\right)\times \frac{2^{7}}{16}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{1+5}{2}\times \frac{2^{7}}{16}}
Since \frac{1}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\sqrt{\frac{6}{2}\times \frac{2^{7}}{16}}
Add 1 and 5 to get 6.
\sqrt{3\times \frac{2^{7}}{16}}
Divide 6 by 2 to get 3.
\sqrt{3\times \frac{128}{16}}
Calculate 2 to the power of 7 and get 128.
\sqrt{3\times 8}
Divide 128 by 16 to get 8.
\sqrt{24}
Multiply 3 and 8 to get 24.
2\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.