Evaluate
\frac{\sqrt{3}}{4}\approx 0.433012702
Share
Copied to clipboard
\sqrt{\frac{\frac{\frac{\frac{6}{10}+\frac{1}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Least common multiple of 5 and 10 is 10. Convert \frac{3}{5} and \frac{1}{10} to fractions with denominator 10.
\sqrt{\frac{\frac{\frac{\frac{6+1}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Since \frac{6}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{\frac{\frac{7}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Add 6 and 1 to get 7.
\sqrt{\frac{\frac{\frac{7}{10}\times \frac{20}{7}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Divide \frac{7}{10} by \frac{7}{20} by multiplying \frac{7}{10} by the reciprocal of \frac{7}{20}.
\sqrt{\frac{\frac{\frac{7\times 20}{10\times 7}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Multiply \frac{7}{10} times \frac{20}{7} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{\frac{20}{10}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Cancel out 7 in both numerator and denominator.
\sqrt{\frac{\frac{2-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Divide 20 by 10 to get 2.
\sqrt{\frac{\frac{2-\left(\frac{12}{10}+\frac{35}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Least common multiple of 5 and 2 is 10. Convert \frac{6}{5} and \frac{7}{2} to fractions with denominator 10.
\sqrt{\frac{\frac{2-\left(\frac{12+35}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Since \frac{12}{10} and \frac{35}{10} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{2-\left(\frac{47}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Add 12 and 35 to get 47.
\sqrt{\frac{\frac{2-\left(\frac{47}{10}-\frac{28}{10}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Least common multiple of 10 and 5 is 10. Convert \frac{47}{10} and \frac{14}{5} to fractions with denominator 10.
\sqrt{\frac{\frac{2-\frac{47-28}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Since \frac{47}{10} and \frac{28}{10} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{2-\frac{19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Subtract 28 from 47 to get 19.
\sqrt{\frac{\frac{\frac{20}{10}-\frac{19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Convert 2 to fraction \frac{20}{10}.
\sqrt{\frac{\frac{\frac{20-19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Since \frac{20}{10} and \frac{19}{10} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{\frac{1}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Subtract 19 from 20 to get 1.
\sqrt{\frac{\frac{1}{10}\times \frac{3}{2}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Divide \frac{1}{10} by \frac{2}{3} by multiplying \frac{1}{10} by the reciprocal of \frac{2}{3}.
\sqrt{\frac{\frac{1\times 3}{10\times 2}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Multiply \frac{1}{10} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{3}{20}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Do the multiplications in the fraction \frac{1\times 3}{10\times 2}.
\sqrt{\frac{\frac{9}{60}-\frac{4}{60}}{\left(\frac{2}{3}\right)^{2}}}
Least common multiple of 20 and 15 is 60. Convert \frac{3}{20} and \frac{1}{15} to fractions with denominator 60.
\sqrt{\frac{\frac{9-4}{60}}{\left(\frac{2}{3}\right)^{2}}}
Since \frac{9}{60} and \frac{4}{60} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{5}{60}}{\left(\frac{2}{3}\right)^{2}}}
Subtract 4 from 9 to get 5.
\sqrt{\frac{\frac{1}{12}}{\left(\frac{2}{3}\right)^{2}}}
Reduce the fraction \frac{5}{60} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{\frac{1}{12}}{\frac{4}{9}}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\sqrt{\frac{1}{12}\times \frac{9}{4}}
Divide \frac{1}{12} by \frac{4}{9} by multiplying \frac{1}{12} by the reciprocal of \frac{4}{9}.
\sqrt{\frac{1\times 9}{12\times 4}}
Multiply \frac{1}{12} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{9}{48}}
Do the multiplications in the fraction \frac{1\times 9}{12\times 4}.
\sqrt{\frac{3}{16}}
Reduce the fraction \frac{9}{48} to lowest terms by extracting and canceling out 3.
\frac{\sqrt{3}}{\sqrt{16}}
Rewrite the square root of the division \sqrt{\frac{3}{16}} as the division of square roots \frac{\sqrt{3}}{\sqrt{16}}.
\frac{\sqrt{3}}{4}
Calculate the square root of 16 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}