Evaluate
\frac{2\sqrt{2}}{3}\approx 0.942809042
Share
Copied to clipboard
\sqrt{\frac{\frac{\frac{225}{49}}{\frac{9}{49}}\left(\frac{1}{10}+\frac{3}{20}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Calculate \frac{15}{7} to the power of 2 and get \frac{225}{49}.
\sqrt{\frac{\frac{225}{49}\times \frac{49}{9}\left(\frac{1}{10}+\frac{3}{20}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Divide \frac{225}{49} by \frac{9}{49} by multiplying \frac{225}{49} by the reciprocal of \frac{9}{49}.
\sqrt{\frac{\frac{225\times 49}{49\times 9}\left(\frac{1}{10}+\frac{3}{20}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Multiply \frac{225}{49} times \frac{49}{9} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{225}{9}\left(\frac{1}{10}+\frac{3}{20}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Cancel out 49 in both numerator and denominator.
\sqrt{\frac{25\left(\frac{1}{10}+\frac{3}{20}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Divide 225 by 9 to get 25.
\sqrt{\frac{25\left(\frac{2}{20}+\frac{3}{20}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Least common multiple of 10 and 20 is 20. Convert \frac{1}{10} and \frac{3}{20} to fractions with denominator 20.
\sqrt{\frac{25\left(\frac{2+3}{20}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Since \frac{2}{20} and \frac{3}{20} have the same denominator, add them by adding their numerators.
\sqrt{\frac{25\left(\frac{5}{20}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Add 2 and 3 to get 5.
\sqrt{\frac{25\left(\frac{1}{4}+\frac{1}{10}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{25\left(\frac{5}{20}+\frac{2}{20}\right)\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Least common multiple of 4 and 10 is 20. Convert \frac{1}{4} and \frac{1}{10} to fractions with denominator 20.
\sqrt{\frac{25\times \frac{5+2}{20}\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Since \frac{5}{20} and \frac{2}{20} have the same denominator, add them by adding their numerators.
\sqrt{\frac{25\times \frac{7}{20}\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Add 5 and 2 to get 7.
\sqrt{\frac{\frac{25\times 7}{20}\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Express 25\times \frac{7}{20} as a single fraction.
\sqrt{\frac{\frac{175}{20}\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Multiply 25 and 7 to get 175.
\sqrt{\frac{\frac{35}{4}\times \frac{4}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Reduce the fraction \frac{175}{20} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{\frac{35\times 4}{4\times 5}\times \frac{1}{14}}{\frac{18}{32}}}
Multiply \frac{35}{4} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{35}{5}\times \frac{1}{14}}{\frac{18}{32}}}
Cancel out 4 in both numerator and denominator.
\sqrt{\frac{7\times \frac{1}{14}}{\frac{18}{32}}}
Divide 35 by 5 to get 7.
\sqrt{\frac{\frac{7}{14}}{\frac{18}{32}}}
Multiply 7 and \frac{1}{14} to get \frac{7}{14}.
\sqrt{\frac{\frac{1}{2}}{\frac{18}{32}}}
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
\sqrt{\frac{\frac{1}{2}}{\frac{9}{16}}}
Reduce the fraction \frac{18}{32} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{1}{2}\times \frac{16}{9}}
Divide \frac{1}{2} by \frac{9}{16} by multiplying \frac{1}{2} by the reciprocal of \frac{9}{16}.
\sqrt{\frac{1\times 16}{2\times 9}}
Multiply \frac{1}{2} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{16}{18}}
Do the multiplications in the fraction \frac{1\times 16}{2\times 9}.
\sqrt{\frac{8}{9}}
Reduce the fraction \frac{16}{18} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{8}}{\sqrt{9}}
Rewrite the square root of the division \sqrt{\frac{8}{9}} as the division of square roots \frac{\sqrt{8}}{\sqrt{9}}.
\frac{2\sqrt{2}}{\sqrt{9}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{2}}{3}
Calculate the square root of 9 and get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}