Evaluate
\frac{15}{8}=1.875
Factor
\frac{3 \cdot 5}{2 ^ {3}} = 1\frac{7}{8} = 1.875
Share
Copied to clipboard
\sqrt{\left(\frac{\left(\frac{20}{6}-\frac{11}{6}\right)\times \frac{4}{15}+\frac{3}{5}\left(\frac{2}{3}-\frac{1}{2}\right)}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Least common multiple of 3 and 6 is 6. Convert \frac{10}{3} and \frac{11}{6} to fractions with denominator 6.
\sqrt{\left(\frac{\frac{20-11}{6}\times \frac{4}{15}+\frac{3}{5}\left(\frac{2}{3}-\frac{1}{2}\right)}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Since \frac{20}{6} and \frac{11}{6} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\left(\frac{\frac{9}{6}\times \frac{4}{15}+\frac{3}{5}\left(\frac{2}{3}-\frac{1}{2}\right)}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Subtract 11 from 20 to get 9.
\sqrt{\left(\frac{\frac{3}{2}\times \frac{4}{15}+\frac{3}{5}\left(\frac{2}{3}-\frac{1}{2}\right)}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
\sqrt{\left(\frac{\frac{3\times 4}{2\times 15}+\frac{3}{5}\left(\frac{2}{3}-\frac{1}{2}\right)}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Multiply \frac{3}{2} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{\frac{12}{30}+\frac{3}{5}\left(\frac{2}{3}-\frac{1}{2}\right)}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Do the multiplications in the fraction \frac{3\times 4}{2\times 15}.
\sqrt{\left(\frac{\frac{2}{5}+\frac{3}{5}\left(\frac{2}{3}-\frac{1}{2}\right)}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Reduce the fraction \frac{12}{30} to lowest terms by extracting and canceling out 6.
\sqrt{\left(\frac{\frac{2}{5}+\frac{3}{5}\left(\frac{4}{6}-\frac{3}{6}\right)}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{1}{2} to fractions with denominator 6.
\sqrt{\left(\frac{\frac{2}{5}+\frac{3}{5}\times \frac{4-3}{6}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Since \frac{4}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\left(\frac{\frac{2}{5}+\frac{3}{5}\times \frac{1}{6}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Subtract 3 from 4 to get 1.
\sqrt{\left(\frac{\frac{2}{5}+\frac{3\times 1}{5\times 6}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Multiply \frac{3}{5} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{\frac{2}{5}+\frac{3}{30}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Do the multiplications in the fraction \frac{3\times 1}{5\times 6}.
\sqrt{\left(\frac{\frac{2}{5}+\frac{1}{10}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
\sqrt{\left(\frac{\frac{4}{10}+\frac{1}{10}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Least common multiple of 5 and 10 is 10. Convert \frac{2}{5} and \frac{1}{10} to fractions with denominator 10.
\sqrt{\left(\frac{\frac{4+1}{10}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Since \frac{4}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{\frac{5}{10}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Add 4 and 1 to get 5.
\sqrt{\left(\frac{\frac{1}{2}}{\frac{8}{3}}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\sqrt{\left(\frac{1}{2}\times \frac{3}{8}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Divide \frac{1}{2} by \frac{8}{3} by multiplying \frac{1}{2} by the reciprocal of \frac{8}{3}.
\sqrt{\left(\frac{1\times 3}{2\times 8}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Multiply \frac{1}{2} times \frac{3}{8} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{3}{16}+1-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Do the multiplications in the fraction \frac{1\times 3}{2\times 8}.
\sqrt{\left(\frac{3}{16}+\frac{16}{16}-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Convert 1 to fraction \frac{16}{16}.
\sqrt{\left(\frac{3+16}{16}-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Since \frac{3}{16} and \frac{16}{16} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{19}{16}-\left(\frac{1}{2}\right)^{2}\right)\left(3+\frac{3}{4}\right)}
Add 3 and 16 to get 19.
\sqrt{\left(\frac{19}{16}-\frac{1}{4}\right)\left(3+\frac{3}{4}\right)}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\sqrt{\left(\frac{19}{16}-\frac{4}{16}\right)\left(3+\frac{3}{4}\right)}
Least common multiple of 16 and 4 is 16. Convert \frac{19}{16} and \frac{1}{4} to fractions with denominator 16.
\sqrt{\frac{19-4}{16}\left(3+\frac{3}{4}\right)}
Since \frac{19}{16} and \frac{4}{16} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{15}{16}\left(3+\frac{3}{4}\right)}
Subtract 4 from 19 to get 15.
\sqrt{\frac{15}{16}\left(\frac{12}{4}+\frac{3}{4}\right)}
Convert 3 to fraction \frac{12}{4}.
\sqrt{\frac{15}{16}\times \frac{12+3}{4}}
Since \frac{12}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{15}{16}\times \frac{15}{4}}
Add 12 and 3 to get 15.
\sqrt{\frac{15\times 15}{16\times 4}}
Multiply \frac{15}{16} times \frac{15}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{225}{64}}
Do the multiplications in the fraction \frac{15\times 15}{16\times 4}.
\frac{15}{8}
Rewrite the square root of the division \frac{225}{64} as the division of square roots \frac{\sqrt{225}}{\sqrt{64}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}