Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{2}\right)^{2}}{\frac{1-\frac{5}{8}}{\frac{3}{2}}+2-\frac{3}{2}}\left(4^{2}-1\right)}
Subtract \frac{15}{4} from 4 to get \frac{1}{4}.
\sqrt{\frac{\frac{1}{16}+\left(\frac{1}{2}\right)^{2}}{\frac{1-\frac{5}{8}}{\frac{3}{2}}+2-\frac{3}{2}}\left(4^{2}-1\right)}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\sqrt{\frac{\frac{1}{16}+\frac{1}{4}}{\frac{1-\frac{5}{8}}{\frac{3}{2}}+2-\frac{3}{2}}\left(4^{2}-1\right)}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\sqrt{\frac{\frac{5}{16}}{\frac{1-\frac{5}{8}}{\frac{3}{2}}+2-\frac{3}{2}}\left(4^{2}-1\right)}
Add \frac{1}{16} and \frac{1}{4} to get \frac{5}{16}.
\sqrt{\frac{\frac{5}{16}}{\frac{\frac{3}{8}}{\frac{3}{2}}+2-\frac{3}{2}}\left(4^{2}-1\right)}
Subtract \frac{5}{8} from 1 to get \frac{3}{8}.
\sqrt{\frac{\frac{5}{16}}{\frac{3}{8}\times \frac{2}{3}+2-\frac{3}{2}}\left(4^{2}-1\right)}
Divide \frac{3}{8} by \frac{3}{2} by multiplying \frac{3}{8} by the reciprocal of \frac{3}{2}.
\sqrt{\frac{\frac{5}{16}}{\frac{1}{4}+2-\frac{3}{2}}\left(4^{2}-1\right)}
Multiply \frac{3}{8} and \frac{2}{3} to get \frac{1}{4}.
\sqrt{\frac{\frac{5}{16}}{\frac{9}{4}-\frac{3}{2}}\left(4^{2}-1\right)}
Add \frac{1}{4} and 2 to get \frac{9}{4}.
\sqrt{\frac{\frac{5}{16}}{\frac{3}{4}}\left(4^{2}-1\right)}
Subtract \frac{3}{2} from \frac{9}{4} to get \frac{3}{4}.
\sqrt{\frac{5}{16}\times \frac{4}{3}\left(4^{2}-1\right)}
Divide \frac{5}{16} by \frac{3}{4} by multiplying \frac{5}{16} by the reciprocal of \frac{3}{4}.
\sqrt{\frac{5}{12}\left(4^{2}-1\right)}
Multiply \frac{5}{16} and \frac{4}{3} to get \frac{5}{12}.
\sqrt{\frac{5}{12}\left(16-1\right)}
Calculate 4 to the power of 2 and get 16.
\sqrt{\frac{5}{12}\times 15}
Subtract 1 from 16 to get 15.
\sqrt{\frac{25}{4}}
Multiply \frac{5}{12} and 15 to get \frac{25}{4}.
\frac{5}{2}
Rewrite the square root of the division \frac{25}{4} as the division of square roots \frac{\sqrt{25}}{\sqrt{4}}. Take the square root of both numerator and denominator.