Solve for t
t=1
t=-2
Share
Copied to clipboard
\left(\sqrt{\left(1-t-1\right)^{2}+\left(1-2t\right)^{2}}\right)^{2}=\left(\sqrt{11-9t}\right)^{2}
Square both sides of the equation.
\left(\sqrt{\left(-t\right)^{2}+\left(1-2t\right)^{2}}\right)^{2}=\left(\sqrt{11-9t}\right)^{2}
Subtract 1 from 1 to get 0.
\left(\sqrt{\left(-1\right)^{2}t^{2}+\left(1-2t\right)^{2}}\right)^{2}=\left(\sqrt{11-9t}\right)^{2}
Expand \left(-t\right)^{2}.
\left(\sqrt{1t^{2}+\left(1-2t\right)^{2}}\right)^{2}=\left(\sqrt{11-9t}\right)^{2}
Calculate -1 to the power of 2 and get 1.
\left(\sqrt{1t^{2}+1-4t+4t^{2}}\right)^{2}=\left(\sqrt{11-9t}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2t\right)^{2}.
\left(\sqrt{5t^{2}+1-4t}\right)^{2}=\left(\sqrt{11-9t}\right)^{2}
Combine 1t^{2} and 4t^{2} to get 5t^{2}.
5t^{2}+1-4t=\left(\sqrt{11-9t}\right)^{2}
Calculate \sqrt{5t^{2}+1-4t} to the power of 2 and get 5t^{2}+1-4t.
5t^{2}+1-4t=11-9t
Calculate \sqrt{11-9t} to the power of 2 and get 11-9t.
5t^{2}+1-4t-11=-9t
Subtract 11 from both sides.
5t^{2}-10-4t=-9t
Subtract 11 from 1 to get -10.
5t^{2}-10-4t+9t=0
Add 9t to both sides.
5t^{2}-10+5t=0
Combine -4t and 9t to get 5t.
t^{2}-2+t=0
Divide both sides by 5.
t^{2}+t-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=1\left(-2\right)=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as t^{2}+at+bt-2. To find a and b, set up a system to be solved.
a=-1 b=2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(t^{2}-t\right)+\left(2t-2\right)
Rewrite t^{2}+t-2 as \left(t^{2}-t\right)+\left(2t-2\right).
t\left(t-1\right)+2\left(t-1\right)
Factor out t in the first and 2 in the second group.
\left(t-1\right)\left(t+2\right)
Factor out common term t-1 by using distributive property.
t=1 t=-2
To find equation solutions, solve t-1=0 and t+2=0.
\sqrt{\left(1-1-1\right)^{2}+\left(1-2\right)^{2}}=\sqrt{11-9}
Substitute 1 for t in the equation \sqrt{\left(1-t-1\right)^{2}+\left(1-2t\right)^{2}}=\sqrt{11-9t}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value t=1 satisfies the equation.
\sqrt{\left(1-\left(-2\right)-1\right)^{2}+\left(1-2\left(-2\right)\right)^{2}}=\sqrt{11-9\left(-2\right)}
Substitute -2 for t in the equation \sqrt{\left(1-t-1\right)^{2}+\left(1-2t\right)^{2}}=\sqrt{11-9t}.
29^{\frac{1}{2}}=29^{\frac{1}{2}}
Simplify. The value t=-2 satisfies the equation.
t=1 t=-2
List all solutions of \sqrt{\left(1-2t\right)^{2}+\left(-t\right)^{2}}=\sqrt{11-9t}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}