Evaluate
\frac{\sqrt{38}}{2}\approx 3.082207001
Share
Copied to clipboard
\sqrt{\frac{\frac{\left(\frac{11}{9}\right)^{2}}{\left(\frac{7}{3}-\frac{1}{2}\right)^{2}}+\left(\frac{2^{3}}{15}\times \frac{25}{2^{2}}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Add \frac{8}{9} and \frac{1}{3} to get \frac{11}{9}.
\sqrt{\frac{\frac{\frac{121}{81}}{\left(\frac{7}{3}-\frac{1}{2}\right)^{2}}+\left(\frac{2^{3}}{15}\times \frac{25}{2^{2}}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Calculate \frac{11}{9} to the power of 2 and get \frac{121}{81}.
\sqrt{\frac{\frac{\frac{121}{81}}{\left(\frac{11}{6}\right)^{2}}+\left(\frac{2^{3}}{15}\times \frac{25}{2^{2}}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Subtract \frac{1}{2} from \frac{7}{3} to get \frac{11}{6}.
\sqrt{\frac{\frac{\frac{121}{81}}{\frac{121}{36}}+\left(\frac{2^{3}}{15}\times \frac{25}{2^{2}}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Calculate \frac{11}{6} to the power of 2 and get \frac{121}{36}.
\sqrt{\frac{\frac{121}{81}\times \frac{36}{121}+\left(\frac{2^{3}}{15}\times \frac{25}{2^{2}}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Divide \frac{121}{81} by \frac{121}{36} by multiplying \frac{121}{81} by the reciprocal of \frac{121}{36}.
\sqrt{\frac{\frac{4}{9}+\left(\frac{2^{3}}{15}\times \frac{25}{2^{2}}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Multiply \frac{121}{81} and \frac{36}{121} to get \frac{4}{9}.
\sqrt{\frac{\frac{4}{9}+\left(\frac{8}{15}\times \frac{25}{2^{2}}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Calculate 2 to the power of 3 and get 8.
\sqrt{\frac{\frac{4}{9}+\left(\frac{8}{15}\times \frac{25}{4}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Calculate 2 to the power of 2 and get 4.
\sqrt{\frac{\frac{4}{9}+\left(\frac{10}{3}-\frac{1}{3}\right)^{3}}{\frac{2}{9}+\frac{8}{3}}}
Multiply \frac{8}{15} and \frac{25}{4} to get \frac{10}{3}.
\sqrt{\frac{\frac{4}{9}+3^{3}}{\frac{2}{9}+\frac{8}{3}}}
Subtract \frac{1}{3} from \frac{10}{3} to get 3.
\sqrt{\frac{\frac{4}{9}+27}{\frac{2}{9}+\frac{8}{3}}}
Calculate 3 to the power of 3 and get 27.
\sqrt{\frac{\frac{247}{9}}{\frac{2}{9}+\frac{8}{3}}}
Add \frac{4}{9} and 27 to get \frac{247}{9}.
\sqrt{\frac{\frac{247}{9}}{\frac{26}{9}}}
Add \frac{2}{9} and \frac{8}{3} to get \frac{26}{9}.
\sqrt{\frac{247}{9}\times \frac{9}{26}}
Divide \frac{247}{9} by \frac{26}{9} by multiplying \frac{247}{9} by the reciprocal of \frac{26}{9}.
\sqrt{\frac{19}{2}}
Multiply \frac{247}{9} and \frac{9}{26} to get \frac{19}{2}.
\frac{\sqrt{19}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{19}{2}} as the division of square roots \frac{\sqrt{19}}{\sqrt{2}}.
\frac{\sqrt{19}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{19}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{19}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{38}}{2}
To multiply \sqrt{19} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}